

Test Input Generation Using Deep Q-Learning Based
Generators

Sicheng Jiang Caroline Lemieux
April 29, 2020

ABSTRACT

Generator-based testing tools such as QuickCheck can effectively generate random test inputs
for programs. However, simple hand-written generators used with these tools may fail to
capture the semantic structure of the inputs generated and therefore generate mostly invalid
inputs for some programs. A reinforcement learning based approach called RLCheck can
generate inputs that tend to be both valid and diverse using Q-table based generators.
RLCheck works well but has several limitations. One is that it requires the user to provide a
good state representation function, which can have a significant impact on the unique rate of
the inputs generated. The other limitation is due to the fact that it has to save every state it
meets in the Q-table, which makes the memory usage grow rapidly.

In this work, we replace the Q-table in RLCheck with a neural network and try to use the
Deep Q-Learning to overcome the two limitations above. We make the neural network to
learn a proper state representation function, and use a curiosity-driven reward to encourage
the agent to explore different states. Finally, we use a recurrent neural network (RNN) to
encode a variable-length state into a fixed-length representation so that the generator can
utilize more information before it selects the next action.

1 Problem Setup

We use O to represent a domain of objects, and G to represent a generator which is a
non-deterministic program returning an object in O every time it is called. And we use
to represent all objects in O that are valid inputs for the program under test. Notice that V is a
black box in our setting and we expect G to learn the semantic structure of V. Let L represent
an oracle (or learner) that is initialized with a fixed action space and non-deterministically
returns an action in every time it is called. And we use to represent the union of all

learners , i.e.

We expect the client of the testing framework to write a relatively simple program to

specify O . And in , the user will ask the oracle L to select a proper action at each choice

point. Notice that and L together make up G.

The goal of this paper is to implement an oracle L that learns to generate unique objects in V
using neural networks. And here is an example of an XML generator client code where O = a
set of XML documents:

class XML_RLGenerator :

 max_num_children = 3
 max_num_attributes = 2

 def __init__ (self , dict_items):
 self .max_depth = 4 # restrict documents to depth 4
 self .dict_items = dict_items # XML tags

 def generate (self , oracle):
 self .depth = 0
 return self .generate_node(0 , oracle)

 def generate_node (self , depth , oracle):
 tag = oracle.select(self .dict_items, 1)
 cur_node = etree.Element(tag)
 num_attributes = oracle.select(range (self .max_num_attributes),
2)
 for _ in range (num_attributes):
 cur_node.set(oracle.select(self .dict_items, 3),

 oracle.select(self .dict_items, 4))
 if depth < self .max_depth and oracle.select([True , False], 5):
 num_children = oracle.select(range (self .max_num_children),

10)
 for i in range (num_children):
 child = self .generate_node(depth + 1 , oracle)
 cur_node.append(child)
 elif oracle.select([True , False], 6):
 text = oracle.select(self .dict_items, 7)
 cur_node.text = text
 return cur_node

2 Generator using simple feed-forward neural network

In this section, we present an implementation of a generator using a group of 2-layer fully
connected feed-forward neural networks.

2.1 Architecture

In this approach, each choice point with index i (where i is usually the line number) will be

backed by a different learner , and each learner is a 2-layer neural network with the
following architecture:

Linear(input_dim, hidden_dim)
ELU(alpha= 0.5)
Normalize()
Linear(hidden_dim, output_dim)

where hidden_dim is set 12 in our examples. input_dim = , where w is the number
of actions we used to determine the current state of the learner, and the extra ‘+1’ is used to

indicate whether the current state is a terminal state. And output_dim is simply . And we

use : to denote this neural network, where R is the set of real numbers.

2.2 Training

We use on-policy training with experience replay inspired by [2]. The generator will generate
an input in each episode. In every episode, when a choice point i is executed in the generator,

a corresponding learner will be called. stores all the previous actions it performed in

this episode in a list , and it looks at w prior actions and output the next action. We define

 as its current state, where the right side of the equation is the last w terms of

. Then, is one-hot encoded into a vector , where E is an encoding function, and

is passed into and generates an output , where

. And an action c is chosen as follows
(where is set to 0.25 in our implementation):

And c is then appended to and returned by the learner . Also, every time after a

transition from one state to another state due to an action , the transition

 is appended to a list T.

After an episode has finished, each will receive a reward indicating whether the input
it has just generated is uniquely valid, just valid, or invalid. Besides that, an additional

intrinsic reward will be calculated for each transition . The details about the intrinsic
reward are discussed in section 2.3.

Then, the transitions stored in T will be grouped into mini-batches, and a loss will be
calculated for each mini-batch. Then, an optimization step will be performed on the loss.

2.3 Using curiosity-driven intrinsic reward

To encourage the learner to explore more states, we use an additional intrinsic reward
inspired by [3] and [4]. And we chose to use Random Network Distillation described in [4] to
compute the intrinsic reward. In particular, we have a randomly initialized neural network

 which encode an state into a feature space with dimension m and is fixed after

the initialization. And there is another neural network we are going to train to
approximate F. The hidden layers of P have a smaller dimension than those of F to prevent
overfit.

Every time we update the Q network after each episode, we also train P to approximate F .
Then the loss we compute in this process can be used as an indicator of how familiar is the
inputted state to the learner. The intuition is that if the learner has encountered a state a lot,
the P net will have a low prediction loss on the output of F . Then, we normalize this
prediction loss by its running average and running standard deviation and set this as the

intrinsic reward of a transition , because a state is not very interesting
if the learner has met it a lot of times.

2.4 Memory replay

For some examples that are difficult to generate a valid input randomly, we have to use
experience replay introduced by [2], where we store all transitions that lead to a valid
generated input in a memory M for each learner. The old transitions will be removed from M
if M is full in order to allow new transitions to be stored.

If the rate of valid inputs is lower than a threshold, then before the updating procedure
described in section 2.2 happens, some transitions will be sampled from M (we only sample
one transition) and append to T to allow the learner to replay some successful experience it
had before .

Notice that the reward of these sampled transitions should be adjusted accordingly, i.e. they
do not share the same reward with the transitions produced in that episode, but have a
different reward for producing valid inputs.

2.5 Bootstrapping

Besides memory replay, we also use bootstrapping to first train the learner offline for several
thousands of episodes by executing the actions of an RLCheck learner instead of our Deep
Q-Learner because RLCheck learner usually can start to generate many valid inputs before
the Deep Q-Learner. This is probably because the neural network has multiple layers to learn
and therefore need more training for the gradients to propagate throughout the entire network.

Bootstrapping is shown to be helpful for the Maven XML example but it makes no difference
for some other examples such as the JavaScript example.

2.6 Results

We tested the deep q-learner on the Maven XML example and the JavaScript example and
compared it to QuickCheck, RLCheck, and Zest (for JavaScript example only).

We use the last 4 actions as the abstract state for both RLCheck and Deep Q-Learner in both

examples. And the rewards are , , for both methods, but the
rewards for the Deep Q-Learner is normalized before used for updating.

2.6.1 Maven XML

Table 1 : Maven XML Results

Method Num

Valid
Num
Unique

Num
Total

Time Total
(s)

Unique to
Total Ratio

Unique per
second

Random 52 2 50000 5.64 0.00004 0.3546
RLCheck 22250 8553 50000 40.12 0.17106 213.2
DeepQ-Learner
(no intrinsic
reward)

18847 10751 50000 1076.83 0.21502 9.980

DeepQ-Learner 17688 11619 50000 1122.67 0.23238 10.35
The first 1000 episodes of the Deep Q-Learner are bootstrapped by RLCheck.

The result shows that the Deep Q-Learner can produce more unique inputs than QuickCheck
and RLCheck for the same number of total inputs generated. However, it runs almost 200
times slower than QuickCheck and 30 times slower than RLCheck, therefore it produces
much less unique inputs per second than RLCheck. Also, the intrinsic reward is shown to
improve the unique rate a little bit in this example.

Figure 1 : Maven XML input distributions

Figure 1 shows the distribution of the length of test inputs generated by the three methods,
where the green line is RLCheck and the blue line is Deep Q-Learner (bootstrapped). We can
see that the length of the inputs generated by Deep Q-Learner is more widely distributed and
tend to be longer than those generated by RLCheck. This indicates that Deep Q-Learner may
be able to generate more diverse inputs than RLCkeck and QuickCheck in some situations.

Figure 2: Effect of Bootstrapping for Maven XML

The Deep Q-learner in the left figure is not bootstrapped, and the one on the right is bootstrapped for the first

1000 episodes.

Figure 2 shows that bootstrapping can help the learner to quickly learn the valid syntax of
Maven and generate unique valid inputs at its maximum rate from the beginning.

2.6.2 JavaScript

Table 2 : JavaScript Results

Method Num

Valid
Num
Unique

Num
Total

Time
Total (s)

Unique to
Total
Ratio

Unique
per
second

Total
Coverage

Random 19707 4205 100018 1253 0.04204 3.356 8553
RLCheck 72809 54593 100000 1477 0.54593 37.73 8906
Zest 36775 16889 100000 1253 0.16889 13.47 9249
DeepQ-Learner
(no intrinsic
reward)

81311 67780 100000 - 0.67780 - 8886

DeepQ-Learner 46336 18936 100000 19179 0.18936 0.9592 9428

The Deep Q-Learner is not bootstrapped in this example.

The results show that Deep Q-Learner without intrinsic reward can generate the most unique
inputs in the first 100k episodes, but Deep Q-Learner with intrinsic reward is able to cover
more branches. Also, we notice that although Deep Q-Learner has comparable performance
to RLCheck and Zest, it still runs much slower than these methods.

Figure 3 : Effect of Bootstrapping for the JavaScript Example

The Deep Q-learner on the right is bootstrapped with Zest for the first 100,000 episodes. The left one is not

bootstrapped. They end up at almost the same coverage after 200,000 episodes.

Figure 3 shows that bootstrapping does not improve the performance of the JavaScript
example. This could be due to the fact that it is relatively easier to randomly generate a valid
JavaScript program.

3 Generator using recurrent neural network

In this section, we discuss an alternative approach using a recurrent neural network, so that
the learner can take all previous actions as the current state.

3.1 Architecture

Since the RNN takes much longer to train, we decide to use the same neural network for all
choice points.

Figure 4 : RNN Learner

When the generator calls the RNN learner at a choice point i , the learner takes the previous

action and the previous choice point index k as the input, encodes them into two vectors

 and correspondingly, and passes them through an encoding network

, which outputs a vector . Then, goes through an LSTM cell, and the

outputted hidden layer is used as the input of a decoder D and a predictor P. P is used to

predict the index i of the current choice point, and the prediction loss () will be used as
the intrinsic reward of the previous transition. The output of D is the score of each action of
the current choice point i . A mask is used before taking the argmax to make sure the action
chosen by the learner is within the domain of the current choice point.

The training process is very similar to the previous approach. We calculate the MSE loss (

) for the action that the learner chose, and perform an optimization step on . The

intuition is that a small will make the learner learn to generate unique valid inputs, and

optimizing will help the network to learn the semantic information behind the choices and
also generate an intrinsic reward.

3.2 Results

We directly connect a Q-network with a LSTM cell in our approach. There is no similar
previous work, and we did not know whether this would work before we tested it. In fact, this
RNN Learner does not work as we expected and its behavior is unstable and unpredictable,
which indicates that the design above is probably wrong and needs some modifications
before proceeding further. Table 3 lists the results of some different runs of the RNN Learner
for the JavaScript Example.

Table 3: RNN Learner results for the JavaScript Example

Sample Num
Valid

Num
Unique

Num
Total

Time Total
(s)

Unique to
Total Ratio

Unique per
second

Total
Coverage

1 2079 201 2489 146 0.0807 1.3767 6661
2 13 9 358 240 0.0251 0.0375 5739
3 1113 174 1455 114 0.1196 1.5263 6807
4 176 104 1257 101 0.0874 1.0297 6526
5 35 23 597 670 0.0385 0.0343 5889
6 2809 719 14706 707 0.0489 1.0170 7081

We observe that the RNN learner usually fails to learn to generate valid inputs, and the
generating speed differs greatly each time. It sometimes tries to produce inputs containing
thousands of choices, which makes the run time significantly longer. This behavior tends to
appear more often when running on a GPU.

We have made many attempts to make it stable, such as adding an extra reward to control the
length of the episode, turning off the intrinsic reward, using the same reward for unique valid
and valid inputs, reducing the size of the network, but none of these really work.

4. Future Work

4.1 Algorithm Changes

For the RNN Learner, we can first train an RNN to represent the state using the transitions of
another generator such as RLCheck, then fix that RNN and train a Q-net using the approach
in section 2. This approach simplifies the problem and also allows the learner to take a
variable-length state as input.

4.2 Other Approaches

Transformer Models Transformer models are widely used in natural language translation
and are computationally cheaper than RNN [6]. We can try to replace the RNN with a
transformer because RNN may not work well when the input sequence is too long (when
there are long-term dependencies) while the transformer does not suffer from this problem
because it uses attention.

Graph Neural Networks We notice that RNN may still not be able to fully represent the
semantic information of a test input object, which could be a graph in some complex
examples such as JavaScript and PDF. Therefore GNN might be a better choice in these cases
because it can directly represent a graph.

Generative Adversarial Networks We can mutually train two networks to play against each
other. A generative network generates test inputs, and a discriminator network rejects the
input generated if it has seen a similar input before. In this way, the generative network might
be able to generate more diverse inputs based on the feedback from the discriminator
network.

REFERENCES

[1] Sameer Reddy, Caroline Lemieux, Rohan Padhye, Koushik Sen. “Quickly Generating
Diverse Valid Test Inputs with Reinforcement Learning” In Proceedings of ICSE 2020.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, Martin Riedmiller. “Playing Atari with Deep Reinforcement
Learning” arXiv:1312.5602v1 [cs.LG] 19 Dec 2013

[3] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, Trevor Darrell. “Curiosity-driven
Exploration by Self-supervised Prediction” arXiv:1705.05363 [cs.LG] 15 May 2017

[4] Yuri Burda, Harrison Edwards, Amos Storkey, Oleg Klimov. “Exploration by Random
Network Distillation” arXiv:1810.12894v1 [cs.LG] 30 Oct 2018

[5] Sameer Reddy, Caroline Lemieux, Koushik Sen. “Reinforcement-Learning Based
Tuning of Generators for Fuzzing” UC Berkeley Technical Report, 2019.

[6] John Canny. UC Berkeley CS182 Spring 2020 Lecture 13.

