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ABSTRACT  
 

Generator-based   testing   tools   such   as   QuickCheck   can   effectively   generate   random   test   inputs  
for   programs.   However,   simple   hand-written   generators   used   with   these   tools   may   fail   to  
capture   the   semantic   structure   of   the   inputs   generated   and   therefore   generate   mostly   invalid  
inputs   for   some   programs.   A   reinforcement   learning   based   approach   called   RLCheck   can  
generate   inputs   that   tend   to   be   both   valid   and   diverse   using   Q-table   based   generators.  
RLCheck   works   well   but   has   several   limitations.   One   is   that   it   requires   the   user   to   provide   a  
good   state   representation   function,   which   can   have   a   significant   impact   on   the   unique   rate   of  
the   inputs   generated.   The   other   limitation   is   due   to   the   fact   that   it   has   to   save   every   state   it  
meets   in   the   Q-table,   which   makes   the   memory   usage   grow   rapidly.   
 

In   this   work,   we   replace   the   Q-table   in   RLCheck   with   a   neural   network   and   try   to   use   the  
Deep   Q-Learning   to   overcome   the   two   limitations   above.   We   make   the   neural   network   to  
learn   a   proper   state   representation   function,   and   use   a   curiosity-driven   reward   to   encourage  
the   agent   to   explore   different   states.   Finally,   we   use   a   recurrent   neural   network   (RNN)   to  
encode   a   variable-length   state   into   a   fixed-length   representation   so   that   the   generator   can  
utilize   more   information   before   it   selects   the   next   action.   
 

1   Problem   Setup  
 

We   use    O    to   represent   a   domain   of   objects,   and    G    to   represent   a   generator   which   is   a  
non-deterministic   program   returning   an   object   in    O    every   time   it   is   called.   And   we   use    
to   represent   all   objects   in    O    that   are   valid   inputs   for   the   program   under   test.   Notice   that    V    is   a  
black   box   in   our   setting   and   we   expect    G    to   learn   the   semantic   structure   of    V.    Let    L    represent  
an   oracle   (or   learner)   that   is   initialized   with   a   fixed   action   space   and   non-deterministically  
returns   an   action   in     every   time   it   is   called.   And   we   use     to   represent   the   union   of   all  

learners   ,   i.e.    
 

We   expect   the   client   of   the   testing   framework   to   write   a   relatively   simple   program     to  

specify    O .   And   in   ,   the   user   will   ask   the   oracle    L    to   select   a   proper   action   at   each   choice  

point. Notice   that     and    L    together   make   up    G.  
 
The   goal   of   this   paper   is   to   implement   an   oracle    L    that   learns   to   generate   unique   objects   in    V  
using   neural   networks. And   here   is   an   example   of   an   XML   generator   client   code   where    O   =    a  
set   of   XML   documents:  
 
class     XML_RLGenerator :  



    max_num_children    =     3  
    max_num_attributes    =     2  
 
     def     __init__ ( self ,    dict_items ):  
         self .max_depth    =     4     #   restrict   documents   to   depth   4  
         self .dict_items    =    dict_items    #   XML   tags  
 
     def     generate ( self ,    oracle ):  
         self .depth    =     0  
         return    self .generate_node( 0 ,   oracle)  
 
     def     generate_node ( self ,    depth ,    oracle ):  
        tag    =    oracle.select( self .dict_items,    1 )  
        cur_node     =    etree.Element(tag)  
        num_attributes    =    oracle.select( range ( self .max_num_attributes),  
2 )  
         for    _    in     range (num_attributes):  
            cur_node.set(oracle.select( self .dict_items,    3 ),  

  oracle.select( self .dict_items,    4 ))  
         if    depth    <     self .max_depth    and    oracle.select([ True ,    False ],    5 ):  
            num_children    =    oracle.select( range ( self .max_num_children),  

10 )  
             for    i    in     range (num_children):  
                child    =     self .generate_node(depth    +     1 ,   oracle)  
                cur_node.append(child)  
         elif    oracle.select([ True ,    False ],    6 ):  
            text    =    oracle.select( self .dict_items,    7 )  
            cur_node.text    =    text  
         return    cur_node  
 

2   Generator   using   simple   feed-forward   neural   network  
 

In   this   section,   we   present   an   implementation   of   a   generator   using   a   group   of   2-layer   fully  
connected   feed-forward   neural   networks.  
 

2.1   Architecture  
 

In   this   approach,   each   choice   point   with   index    i    (where    i    is   usually   the   line   number)     will   be  

backed   by   a   different   learner  ,   and   each   learner   is   a   2-layer   neural   network   with   the  
following   architecture:  
 

Linear(input_dim,   hidden_dim)  
ELU( alpha= 0.5)  
Normalize()  
Linear(hidden_dim,   output_dim)  

 

where   hidden_dim   is   set   12   in   our   examples.   input_dim   =   ,   where    w    is   the   number  
of   actions   we   used   to   determine   the   current   state   of   the   learner,   and   the   extra   ‘+1’   is   used   to  

indicate   whether   the   current   state   is   a   terminal   state.   And   output_dim   is   simply   .   And   we  

use   :     to   denote   this   neural   network,   where    R    is   the   set   of   real   numbers.   
 



 
2.2   Training  
 
We   use   on-policy   training   with   experience   replay   inspired   by   [2].   The   generator   will   generate  
an   input   in   each   episode.   In   every   episode,   when   a   choice   point    i    is   executed   in   the   generator,  

a   corresponding   learner     will   be   called.     stores   all   the   previous   actions   it   performed   in  

this   episode   in   a   list   ,   and   it   looks   at    w    prior   actions   and   output   the   next   action.   We   define  

  as   its   current   state,   where   the   right   side   of   the   equation   is   the   last    w    terms   of   

.   Then,     is   one-hot   encoded   into   a   vector   ,   where    E    is   an   encoding   function,   and  

is   passed   into   and   generates   an   output   ,   where  

.   And   an   action    c    is   chosen   as   follows  
(where     is   set   to   0.25   in   our   implementation):  
 

 

 
 

 

And    c    is   then   appended   to     and   returned   by   the   learner   .   Also,   every   time   after   a  

transition   from   one   state     to   another   state     due   to   an   action   ,   the   transition  

  is   appended   to   a   list    T.  
 

After   an   episode   has   finished,   each     will   receive   a   reward     indicating   whether   the   input  
it   has   just   generated   is   uniquely   valid,   just   valid,   or   invalid.   Besides   that,   an   additional  

intrinsic   reward   will   be   calculated   for   each   transition   .   The   details   about   the   intrinsic  
reward   are   discussed   in   section   2.3.  
 
Then,   the   transitions   stored   in    T    will   be   grouped   into   mini-batches,   and   a   loss   will   be  
calculated   for   each   mini-batch.   Then,   an   optimization   step   will   be   performed   on   the   loss.  
 

 



 
 

 
 
 
2.3   Using   curiosity-driven   intrinsic   reward  
 
To   encourage   the   learner   to   explore   more   states,   we   use   an   additional   intrinsic   reward  
inspired   by   [3]   and   [4].   And   we   chose   to   use   Random   Network   Distillation   described   in   [4]   to  
compute   the   intrinsic   reward.   In   particular,   we   have   a   randomly   initialized   neural   network  

  which   encode   an   state   into   a   feature   space   with   dimension    m    and   is   fixed   after  

the   initialization.   And   there   is   another   neural   network   we   are   going   to   train   to  
approximate   F.   The   hidden   layers   of    P    have   a   smaller   dimension   than   those   of    F    to   prevent  
overfit.   
 
Every   time   we   update   the   Q   network   after   each   episode,   we   also   train    P    to   approximate    F .  
Then   the   loss   we   compute   in   this   process   can   be   used   as   an   indicator   of   how   familiar   is   the  
inputted   state   to   the   learner.   The   intuition   is   that   if   the   learner   has   encountered   a   state   a   lot,  
the    P    net   will   have   a   low   prediction   loss   on   the   output   of    F .   Then,   we   normalize   this  
prediction   loss   by   its   running   average   and   running   standard   deviation   and   set   this   as   the  

intrinsic   reward     of   a   transition   ,   because   a   state   is   not   very   interesting  
if   the   learner   has   met   it   a   lot   of   times.  
 

 

 
 

 
 
 
 



2.4   Memory   replay   
 
For   some   examples   that   are   difficult   to   generate   a   valid   input   randomly,   we   have   to   use  
experience   replay   introduced   by   [2],   where   we   store   all   transitions   that   lead   to   a   valid  
generated   input   in   a   memory    M    for   each   learner.   The   old   transitions   will   be   removed   from    M  
if    M    is   full   in   order   to   allow   new   transitions   to   be   stored.   
 
If   the   rate   of   valid   inputs   is   lower   than   a   threshold,   then   before   the   updating   procedure  
described   in   section   2.2   happens,   some   transitions   will   be   sampled   from    M    (we   only   sample  
one   transition)     and   append   to    T    to   allow   the   learner   to   replay   some   successful   experience   it  
had   before .   
 
Notice   that   the   reward   of   these   sampled   transitions   should   be   adjusted   accordingly,   i.e.   they  
do   not   share   the   same   reward   with   the   transitions   produced   in   that   episode,   but   have   a  
different   reward   for   producing   valid   inputs.  
 
2.5   Bootstrapping  
 
Besides   memory   replay,   we   also   use   bootstrapping   to   first   train   the   learner   offline   for   several  
thousands   of   episodes   by   executing   the   actions   of   an   RLCheck   learner   instead   of   our   Deep  
Q-Learner   because   RLCheck   learner   usually   can   start   to   generate   many   valid   inputs   before  
the   Deep   Q-Learner.   This   is   probably   because   the   neural   network   has   multiple   layers   to   learn  
and   therefore   need   more   training   for   the   gradients   to   propagate   throughout   the   entire   network.   
 
Bootstrapping   is   shown   to   be   helpful   for   the   Maven   XML   example   but   it   makes   no   difference  
for   some   other   examples   such   as   the   JavaScript   example.   
 
2.6   Results  
 
We   tested   the   deep   q-learner   on   the   Maven   XML   example   and   the   JavaScript   example   and  
compared   it   to   QuickCheck,   RLCheck,   and   Zest   (for   JavaScript   example   only).   
 
We   use   the   last   4   actions   as   the   abstract   state   for   both   RLCheck   and   Deep   Q-Learner   in   both  

examples.   And   the   rewards   are   ,   ,     for   both   methods,   but   the  
rewards   for   the   Deep   Q-Learner   is   normalized   before   used   for   updating.  
 
2.6.1   Maven   XML  

Table   1 :   Maven   XML   Results  
 
Method  Num  

Valid  
Num  
Unique  

Num  
Total  

Time   Total  
(s)  

Unique   to  
Total   Ratio  

Unique   per  
second  

Random  52  2  50000  5.64  0.00004  0.3546  
RLCheck  22250  8553  50000  40.12  0.17106  213.2  
DeepQ-Learner  
(no   intrinsic  
reward)  

18847  10751  50000  1076.83  0.21502  9.980  

DeepQ-Learner  17688  11619  50000  1122.67  0.23238  10.35  
The   first   1000   episodes   of   the   Deep   Q-Learner   are   bootstrapped   by   RLCheck.   



 
The   result   shows   that   the   Deep   Q-Learner   can   produce   more   unique   inputs   than   QuickCheck  
and   RLCheck   for   the   same   number   of   total   inputs   generated.   However,   it   runs   almost   200  
times   slower   than   QuickCheck   and   30   times   slower   than   RLCheck,   therefore   it   produces  
much   less   unique   inputs   per   second   than   RLCheck.   Also,   the   intrinsic   reward   is   shown   to  
improve   the   unique   rate   a   little   bit   in   this   example.   

 
Figure   1 :   Maven   XML   input   distributions  

 

 
Figure   1   shows   the   distribution   of   the   length   of   test   inputs   generated   by   the   three   methods,  
where   the   green   line   is   RLCheck   and   the   blue   line   is   Deep   Q-Learner   (bootstrapped).   We   can  
see   that   the   length   of   the   inputs   generated   by   Deep   Q-Learner   is   more   widely   distributed   and  
tend   to   be   longer   than   those   generated   by   RLCheck.   This   indicates   that   Deep   Q-Learner   may  
be   able   to   generate   more   diverse   inputs   than   RLCkeck   and   QuickCheck   in   some   situations.  
 

Figure   2:    Effect   of   Bootstrapping   for   Maven   XML  
 

 
The   Deep   Q-learner   in   the   left   figure   is   not   bootstrapped,   and   the   one   on   the   right   is   bootstrapped   for   the   first  

1000   episodes.  



 
Figure   2   shows   that   bootstrapping   can   help   the   learner   to   quickly   learn   the   valid   syntax   of  
Maven   and   generate   unique   valid   inputs   at   its   maximum   rate   from   the   beginning.  
 
2.6.2   JavaScript  
 

Table   2 :   JavaScript   Results  
 
Method  Num  

Valid  
Num  
Unique  

Num  
Total  

Time  
Total   (s)  

Unique   to  
Total  
Ratio  

Unique  
per  
second  

Total  
Coverage  

Random  19707  4205  100018  1253  0.04204  3.356  8553  
RLCheck  72809  54593  100000  1477  0.54593  37.73  8906  
Zest  36775  16889  100000  1253  0.16889  13.47  9249  
DeepQ-Learner  
(no   intrinsic  
reward)  

81311  67780  100000  -  0.67780  -  8886  

DeepQ-Learner  46336  18936  100000  19179  0.18936  0.9592  9428  
 

The   Deep   Q-Learner   is   not   bootstrapped   in   this   example.  
 
The   results   show   that   Deep   Q-Learner   without   intrinsic   reward   can   generate   the   most   unique  
inputs   in   the   first   100k   episodes,   but   Deep   Q-Learner   with   intrinsic   reward   is   able   to   cover  
more   branches.   Also,   we   notice   that   although   Deep   Q-Learner   has   comparable   performance  
to   RLCheck   and   Zest,   it   still   runs   much   slower   than   these   methods.   
 
 

Figure   3 :      Effect   of   Bootstrapping   for   the   JavaScript   Example  
 

 
The   Deep   Q-learner   on   the   right   is   bootstrapped   with   Zest   for   the   first   100,000   episodes.   The   left   one   is   not  

bootstrapped.   They   end   up   at   almost   the   same   coverage   after   200,000   episodes.  
 

Figure  3  shows  that  bootstrapping  does  not  improve  the  performance  of  the  JavaScript              
example.  This  could  be  due  to  the  fact  that  it  is  relatively  easier  to  randomly  generate  a  valid                   
JavaScript   program.   
 
 
 



3   Generator   using   recurrent   neural   network  
 
In   this   section,   we   discuss   an   alternative   approach   using   a   recurrent   neural   network,   so   that  
the   learner   can   take   all   previous   actions   as   the   current   state.   
 
3.1   Architecture  
 
Since   the   RNN   takes   much   longer   to   train,   we   decide   to   use   the   same   neural   network   for   all  
choice   points.   

Figure   4 :   RNN   Learner  
 

 
When   the   generator   calls   the   RNN   learner   at   a   choice   point    i ,   the   learner   takes   the   previous  

action     and   the   previous   choice   point   index    k    as   the   input,   encodes   them   into   two   vectors  

  and     correspondingly,   and   passes   them   through   an   encoding   network  

,   which   outputs   a   vector   .   Then,     goes   through   an   LSTM   cell,   and   the  

outputted   hidden   layer     is   used   as   the   input   of   a   decoder    D    and   a   predictor    P.     P    is   used   to  

predict   the   index    i    of   the   current   choice   point,   and   the   prediction   loss   ( )   will   be   used   as  
the   intrinsic   reward   of   the   previous   transition.   The   output   of    D    is   the   score   of   each   action   of  
the   current   choice   point    i .   A   mask   is   used   before   taking   the   argmax   to   make   sure   the   action  
chosen   by   the   learner   is   within   the   domain   of   the   current   choice   point.  
 

The   training   process   is   very   similar   to   the   previous   approach.   We   calculate   the   MSE   loss   ( 

)   for   the   action     that   the   learner   chose,   and   perform   an   optimization   step   on   .   The  

intuition   is   that   a   small     will   make   the   learner   learn   to   generate   unique   valid   inputs,   and  

optimizing   will   help   the   network   to   learn   the   semantic   information   behind   the   choices   and  
also   generate   an   intrinsic   reward.  



 
3.2   Results  
 
We   directly   connect   a   Q-network   with   a   LSTM   cell   in   our   approach.   There   is   no   similar  
previous   work,   and   we   did   not   know   whether   this   would   work   before   we   tested   it.   In   fact,   this  
RNN   Learner   does   not   work   as   we   expected   and   its   behavior   is   unstable   and   unpredictable,  
which   indicates   that   the   design   above   is   probably   wrong   and   needs   some   modifications  
before   proceeding   further.   Table   3   lists   the   results   of   some   different   runs   of   the   RNN   Learner  
for   the   JavaScript   Example.  

Table   3:    RNN   Learner     results   for   the   JavaScript   Example  

Sample  Num  
Valid  

Num  
Unique  

Num  
Total  

Time   Total  
(s)  

Unique   to  
Total   Ratio  

Unique   per  
second  

Total  
Coverage  

1  2079  201  2489  146  0.0807  1.3767  6661  
2  13  9  358  240  0.0251  0.0375  5739  
3  1113  174  1455  114  0.1196  1.5263  6807  
4  176  104  1257  101  0.0874  1.0297  6526  
5  35  23  597  670  0.0385  0.0343  5889  
6  2809  719  14706  707  0.0489  1.0170  7081  
 

We   observe   that   the   RNN   learner   usually   fails   to   learn   to   generate   valid   inputs,   and   the  
generating   speed   differs   greatly   each   time.   It   sometimes   tries   to   produce   inputs   containing  
thousands   of   choices,   which   makes   the   run   time   significantly   longer.   This   behavior   tends   to  
appear   more   often   when   running   on   a   GPU.  

We   have   made   many   attempts   to   make   it   stable,   such   as   adding   an   extra   reward   to   control   the  
length   of   the   episode,   turning   off   the   intrinsic   reward,   using   the   same   reward   for   unique   valid  
and   valid   inputs,   reducing   the   size   of   the   network,   but   none   of   these   really   work.  

 

4. Future   Work  

4.1 Algorithm   Changes  

For   the   RNN   Learner,   we   can   first   train   an   RNN   to   represent   the   state   using   the   transitions   of  
another   generator   such   as   RLCheck,   then   fix   that   RNN   and   train   a   Q-net   using   the   approach  
in   section   2.   This   approach   simplifies   the   problem   and   also   allows   the   learner   to   take   a  
variable-length   state   as   input.   

4.2 Other   Approaches  

Transformer   Models     Transformer   models   are   widely   used   in   natural   language   translation  
and   are   computationally   cheaper   than   RNN   [6].   We   can   try   to   replace   the   RNN   with   a  
transformer   because   RNN   may   not   work   well   when   the   input   sequence   is   too   long   (when  
there   are   long-term   dependencies)   while   the   transformer   does   not   suffer   from   this   problem  
because   it   uses   attention.  



Graph   Neural   Networks     We   notice   that   RNN   may   still   not   be   able   to   fully   represent   the  
semantic   information   of   a   test   input   object,   which   could   be   a   graph   in   some   complex  
examples   such   as   JavaScript   and   PDF.   Therefore   GNN   might   be   a   better   choice   in   these   cases  
because   it   can   directly   represent   a   graph.  

Generative   Adversarial   Networks     We   can   mutually   train   two   networks   to   play   against   each  
other.   A   generative   network   generates   test   inputs,   and   a   discriminator   network   rejects   the  
input   generated   if   it   has   seen   a   similar   input   before.   In   this   way,   the   generative   network   might  
be   able   to   generate   more   diverse   inputs   based   on   the   feedback   from   the   discriminator  
network.  
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