Caroline Lemieux — Teaching Statement

I am interested and qualified to teach programming and software engineering topics from the intro-
ductory to advanced levels, as well as programming languages and compilers topics. In the classroom,
I aim to create an inclusive environment that leaves students with solid theoretical foundations and
confidence in their ability to transfer these foundations between different programming languages,
frameworks, and application domains. While I came into my first computer science class without any
prior coding experience, its focus on the fundamentals of program design made the subject accessible
to me. As a math major, what stood out for me was the fascinating bridge computer science created
between logic and the concrete. My goal is to help students find their own avenues of interest in
computer science.

I have been a teaching assistant for several courses during my undergraduate and graduate studies:
UBC’s CPSC 110 and UC Berkeley’s CS 61A, the introductory programming courses at each university,
and UC Berkeley’s CS 164, the intermediate compilers course. Each had different learning goals and
levels of teaching infrastructure.

Teaching Experience

I have TA’d two introductory programming courses. For CPSC 110 at UBC, I was an in-class
TA, meaning that I mostly helped students work through problems in a flipped-classroom setting.
For CS 61A at Berkeley, I ran two discussions and two lab sections, as well as a series of extra
lectures. Through these experiences, I learned how to ask questions to identify the fundamental
misunderstanding that prevented a student from solving a particular problem. With this knowledge, 1
was able to discuss that fundamental misunderstanding, and build up a series of questions that enabled
the student to understand the concept from their own explanations.

In CS 61A, beyond my regular TA tasks, I ran the course’s extra lecture series: a l-hour extra
lecture every week for students interested in pursuing further material in a smaller section. While I
had some resources in the form of code to guide the lectures, I largely prepared lectures from scratch.
To keep lectures interactive and make sure students were engaged, I frequently asked the students
small, low-stakes, questions. This generally made it easier for them to ask deeper questions later
on. When students seemed reticent to ask or answer questions, I had them discuss issues with a
partner. Removing the pressure from them as an individual-—the fear of being perceived as wrong or
stupid—made them more comfortable to ask deeper questions.

Finally, I TA’d CS 164, the compilers course at Berkeley. This class involves both core theory of
compilers (lexing, parsing, code generation, optimization) and basic formal programming languages
topics (operation semantics, typing rules). This class was of a much smaller scale, 90-100 students,
and so had less infrastructure. In addition to running discussions and office hours, which were similar
in style to CS 61A, I also created the discussion worksheets, and created and graded exam questions.
Throughout the process of creating course materials, I learned to write problems which revealed key
complexities of the topic being taught. Working through these problems naturally brought students
to identify their misunderstandings and ask questions that allowed me to effectively address them.

Online learning and interaction. At UBC, I was a teaching assistant for the Coursera offering
of CPSC 110, “Introduction to Systematic Program Design”. I was initially brought on to this role to
edit the video lectures for the course. Later, I was one of the two TAs who helped run the forums and
create projects for the course. Thanks to this course, I have extensive experience with video editing
and packaging materials for an asynchronous learning format.

The experience really opened my eyes to the sheer amount of motivation students need to have
to get through a MOOC. That knowledge propelled me to be extra proactive in driving engagement
in events virtualized because of COVID: visit days, social hours, the Programming Systems seminar.



Page 2 of Caroline Lemieux — Teaching Statement

The key to driving engagement online is to abandon the idea that students want to speak up in front
of everyone in a large online call. This type of broadcast is intimidating for the vast majority of
students. Depending on the event, I have added personalized 1-1 interactions, forced breakout rooms,
and focused on non-video call activities (i.e., short games or polls).

Teaching Philosophy

I believe that introductory university-level computer science courses should provide the opportunity
for students with a variety of backgrounds to succeed, and focus on core skills necessary to apply
programming to a variety of domains of interest. To me, these core skills are programmatic thinking—
i.e. control flow, recursion, statefulness—and the ability to break down problems in order to solve them
programmatically. This involves allowing students to reason on their own from problem statements,
to expected program behavior, to code. These core skills are useful to students of all backgrounds,
providing the necessary foundation for CS majors and arming non-CS majors with the tools they need
to tackle programmatic problems in their own fields.

Emphasizing these core skills over the ability to solve a large number of clever programming
problems is also important in creating a level playing field for incoming students. Although my
high school education involved good preparation in English, Mathematics, and Sciences, there was
no class I could have taken there that would have provided me with any reasonable programming
experience. However, since my first CS course emphasized problem solving over clever coding, I
was able to get up to speed with students with more experience. From there, I was able to follow
a succession of intermediate and advanced courses in programming, logic, and architecture, which
required programming experience.

In short: we must strive to create curricula that provide clear stepping stones for students with-
out programming experience to learn core programming skills, even if this means a “slower” first
class for students with programming knowledge. Our intermediate and advanced courses can build
towards more industry-specific skills, but our core goal should be to enable students to learn whatever
frameworks and languages they will run into, rather than teaching them how to use specific ones.

Teaching Interests

I particularly enjoy teaching core programming and software engineering classes at the lower un-
dergraduate level. First, as discussed above, I think learning the core principles of programmatic
thinking and design is immensely valuable to both CS and non-CS majors. Additionally, I think it
is incredibly important to have representation at the front of the classroom in these first classes. In
my student evaluations of teaching for CS 61A, I got the feedback: “Caroline Lemieux is so inspiring.
She is my CS female role model and I enjoy going to her extra lectures’.

At the upper undergraduate level, I am interested in teaching topics in programming languages,
compilers, and software engineering. The compiler course I TA’d at Berkeley, on top of core compil-
ers topics, also introduced some formal programming languages theory (formal semantics and type-
checking). T think the most important change that could be made to this course is to reduce the
emphasis on parser theory: just present recursive descent parsing, then focus on the basics necessary
for using parser generators in practice. I would love to create an upper-level undergraduate program-
ming course with a heavier focus on concepts in software testing, debugging, and comprehension.

At the graduate level, there are several seminar-based courses I would be interested in teaching.
Most notably, a course in automated testing, debugging, and program analysis, touching on the most
recent developments in fuzz testing as well as classic papers in randomized testing. I have also spent a
substantial amount of time studying papers at the intersection of machine learning and programming



Page 3 of Caroline Lemieux — Teaching Statement

languages or software engineering. Both these topics are well-suited to a seminar format, focused on
student presentations of each paper, along with classroom discussion of the paper.

Mentoring

I have mentored several graduate students, both in my advisor’s direct group and in Programming
Systems at Berkeley more broadly. In some cases, I was directly mentoring them on research and
communication. That is, I attended weekly research meetings, first providing a bridge between the
professors and the more junior student, and then strategically making space in the meetings where
the student could grow their own communication skills. I am also good at spotting when students in
my group get demotivated. When I notice this, I work with them to understand the issue and resolve
the underlying cause to get them back on track.

Most of my junior graduate student mentorship has been more informal. I naturally took on the
role of general mentor to my labmates. I am someone to go to for questions about the technical
details about the graduate program, or just advice and validation in research and graduate student
life. One of the students whom I interacted with in this manner was kind enough to nominate me
for the Dmitry Angelakos Memorial Achievement Award for this informal mentorship work.
While fellow graduate students provide a form of peer mentorship which is difficult to fully have once
the professor title arrives, I hope to retain this type of accessibility as a professor.

I have also had the opportunity to mentor several undergraduate students while at Berkeley. Most
of these undergraduates were directed to me by my advisor. I am fairly hands-on with the students,
with weekly meetings where we discuss (1) their progress (2) what they are blocked on, and (3) where
they should go next. Depending on the motivations and time-commitments of the student, I place
different weekly goals. My goal is to give students exposure to research, but also a concrete end result.
For a student who is just exploring research, my end-goal is generally to get them to write a technical
report which summarizes their work. In a few cases, these technical reports have had promising enough
results for us to push them into a full paper.

I try to give students problems to work on that allow them to begin exploring different algorithms
to solve the problem early on in the project. I find this gives them ownership of their own project
and self-motivation to move forward. One of my undergrad mentees, who had previously worked on
research in another group at Berkeley, told me that this approach made him interested in pursuing
research and motivated his graduate school applications.

I will use a very similar approach to get my junior graduate students bootstrapped into research,
though I will be able to give them problems that require a little more technical background. A core
difficulty for me during my graduate studies was learning to come up with my own compelling research
problems. Because of this experience, I am well-suited to give my students tools to do this themselves
(e.g., specific brainstorming techniques, suggesting “opener” problems which, when tackled, will open
many exciting research avenues). On the flipside, I am a talented project “closer”, thus I can bring
grounding to my students’ own ideas. All the while, I will expose them to the thought process that
enables me to close projects, so they will also develop this rounded set of skills.



