FAIRFUZZ: A Targeted Mutation Strategy for Increasing Greybox Fuzz Testing Coverage

Caroline Lemieux
University of California, Berkeley, USA
clemieux@cs.berkeley.edu

Koushik Sen
University of California, Berkeley, USA
ksen@cs.berkeley.edu

ABSTRACT
In recent years, fuzz testing has proven itself to be one of the most effective techniques for finding correctness bugs and security vulnerabilities in practice. One particular fuzz testing tool, American Fuzzy Lop (AFL), has become popular thanks to its ease-of-use and bug-finding power. However, AFL remains limited in the bugs it can find since it simply does not cover large regions of code. If it does not cover parts of the code, it will not find bugs there. We propose a two-pronged approach to increase the coverage achieved by AFL. First, the approach automatically identifies branches exercised by few AFL-produced inputs (rare branches), which often guard code that is empirically hard to cover by naively mutating inputs. The second part of the approach is a novel mutation mask creation algorithm, which allows mutations to be biased towards producing inputs hitting a given rare branch. This mask is dynamically computed during fuzz testing and can be adapted to other testing targets. We implement this approach on top of AFL in a tool named FairFuzz. We conduct evaluation on real-world programs against state-of-the-art versions of AFL. We find that on these programs FairFuzz achieves high branch coverage at a faster rate that state-of-the-art versions of AFL. In addition, on programs with nested conditional structure, it achieves sustained increases in branch coverage after 24 hours (average 10.6% increase). In qualitative analysis, we find that FairFuzz has an increased capacity to automatically discover keywords.

CCS CONCEPTS
• Software and its engineering → Software testing and debugging;

KEYWORDS
fuzz testing, coverage-guided greybox fuzzing, rare branches

1 INTRODUCTION
Fuzz testing has emerged as one of the most effective testing techniques for finding correctness bugs and security vulnerabilities in real-world software systems. It has been used successfully by major software companies such as Microsoft [21] and Google [6, 18, 40] for security testing and quality assurance. The success of coverage-guided greybox fuzzing (CGF) in particular has gained attention both in practice and in the research community [10, 11, 37, 42, 46]. One of the leading CGF tools, American Fuzzy Lop (or simply AFL) [51], has found vulnerabilities in a broad array of programs, including Web browsers (e.g., Firefox, Internet Explorer), network tools (e.g., tcpdump, wireshark), image processors (e.g., ImageMagick, libtiff), various system libraries (e.g., OpenSSH, PCRE), C compilers (e.g., GCC, LLVM), and interpreters (for Perl, PHP, JavaScript).

Coverage-guided greybox fuzzing is based on the observation that increasing program coverage often leads to better crash detection. The actual fuzzing process starts with a set of user-provided seed inputs. It then mutates the seed inputs with byte-level operations. It runs the program under test on the mutated inputs and collects program coverage information. Finally, it saves the mutated inputs which are interesting according to the coverage information—the ones that discover new coverage. It continually repeats the process, but starting with these interesting mutated inputs instead of the user-provided inputs.

While many of the individual test inputs it generates may be garbage, due to its low computational overhead, CGF generates test inputs much faster than more sophisticated methods such as symbolic execution [17, 34] and dynamic symbolic execution (a.k.a. concolic testing) techniques [5, 7, 13, 16, 21, 22, 36, 45, 47]. In practice, this trade-off has paid off, and CGF has found numerous correctness bugs and security vulnerabilities in widely used software [3, 10, 11, 37, 46, 51].

Although the goal of AFL and other CGF tools is to find assertion violations and crashes as quickly as possible, their core search strategies are based on coverage feedback—AFL tries to maximize the coverage it achieves. This is because there is no way to find bugs or crashes at a particular program location unless that location is covered by a test input. However, while experimenting with AFL and its extensions, we observed that AFL often fails to cover key program functionalities. For example, AFL did not cover colorspace conversion code in djpeg, attribute list processing code in xml11nt, and a large variety of packet structures in tcpdump. Therefore, AFL cannot be expected to find bugs in these functionalities. Put succinctly, if AFL does not cover some program regions, it will not find bugs in those regions.

We propose a lightweight technique, called FairFuzz, which helps AFL achieve better coverage. This technique requires no extra instrumentation beyond AFL’s regular instrumentation, unlike...
some other recently proposed fuzzing techniques [15, 37, 42, 46]. Thus, the technique preserves AFL’s ease-of-use. While we focus on branch coverage, our proposed technique could easily be modified for other kinds of coverage and testing objectives. FairFuzz is based on a novel mutation strategy that increases the probability of hitting the code locations that have been hit by few of AFL’s previously-generated inputs.

FairFuzz works in two main steps. First, it identifies the program branches that are rarely hit by previously-generated inputs. We call such branches rare branches. These rare branches guard under-explored functionalities of the program. By generating more random inputs hitting these rare branches, FairFuzz greatly increases the coverage of the parts of the code guarded by them.

Second, FairFuzz uses a novel lightweight mutation technique to increase the probability of hitting these rare branches. The mutation strategy is based on the observation that certain parts of an input already hitting a rare branch are crucial to satisfy the conditions necessary to hit that branch. Therefore, to generate more inputs hitting the rare branch via mutation, the parts of the input that are crucial for hitting the branch should not be mutated. FairFuzz identifies these crucial parts of the input by performing a number of small mutation experiments. Later, in test input generation, it avoids mutating these crucial parts of the input. This mutation strategy is orthogonal to approaches that try to increase crashes found by AFL by helping AFL pass magic byte checks [37, 46] or by customizing power schedules [10, 11] and can be combined with them to simultaneously increase code coverage and the number of bugs or crashes discovered.

We implemented our technique, FairFuzz, on top of AFL. We compared to AFLFast [11], an extension of AFL which prioritizes inputs that hit rare paths through the program, but does not change the mutation techniques of AFL. We conduct our evaluation on nine real-world benchmarks, including those used to evaluate AFLFast. We repeat our experiments and provide measures of variability when comparing techniques in our evaluation. We find that on these benchmarks FairFuzz achieves high branch coverage at a faster rate that state-of-the-art versions of AFL (average 6.0% increase after 1 hour, and 3.5% increase after 5 hours). Prior work demonstrates that after a certain amount of coverage is achieved, even small increases in branch coverage can yield more bug finding power [7]. FairFuzz has a stronger advantage on programs with nested conditional structure, obtaining sustained increases in branch coverage (average 10.6% increase after 24 hours), and, according to qualitative coverage analysis, better discovering complex keywords.

In summary, we make the following contributions:

- We propose a novel lightweight mutation masking strategy to increase the chance of hitting the program regions that are missed by previously generated inputs. We describe a method to implement mutation masking which smoothly integrates with the usual fuzz testing mutation procedure.
- We develop an open-source implementation of mutation masking targeted to rare branches on top of AFL, named FairFuzz.
- We perform evaluation of FairFuzz against different state-of-the-art versions of AFL on real-world benchmarks.

We detail the general method and implementation of FairFuzz in Section 3 and the performance results in Section 4. We will begin in Section 2 with a more detailed overview of AFL, its current limitations, and how to overcome these with our method.

2 OVERVIEW

Our proposed technique, FairFuzz, is built on top of American Fuzzy Lop (AFL) [51]. AFL is a popular graybox mutation-based fuzz tester. Greybox fuzz testers [3, 51] are designated as such since, unlike whitebox fuzz testers [13, 21, 22, 44], they do not do any source code analysis, but, unlike pure blackbox fuzz testers [30], they use limited feedback from the program under test to guide their fuzzing strategy. Next we give a brief description of AFL, illustrate one of its limitations, and motivate the need for FairFuzz.

2.1 AFL Overview

To fuzz test programs, AFL generates random inputs. However, instead of generating these inputs from scratch, it selects a set of previously generated inputs and mutates them to derive new inputs. The overall AFL fuzzing algorithm is given in Algorithm 1.

The fuzzing routine takes as input a program and a set of user-provided seed inputs. The seed inputs are used to initialize a queue (Line 2) of inputs. AFL goes through this queue (Line 4), selects an input to mutate (Line 5), mutates the input (Lines 10, 13), runs the

Algorithm 1 AFL algorithm.

```
1. procedure FuzzTest(Prog, Seeds)
2.     Queue ← Seeds
3.     while true do # begin a queue cycle
4.         for input in Queue do
5.             if ~isWorthFuzzing(input) then
6.                 continue
7.             score ← PERFORMANCE_SCORE(Prog,input)
8.             for 0 ≤ i < [input] do
9.                 for mutation in deterministicMutationTypes do
10.                    newinput ← mutate(input, mutation, i)
11.                    runAndSave(Prog, newinput, Queue)
12.             for 0 ≤ i < score do
13.                 newinput ← mutateHavoc(input)
14.                 runAndSave(Prog, newinput, Queue)
15.         procedure mutateHavoc(Prog, input)
16.             numMutations ← randomBetween(1,256)
17.             newinput ← input
18.             for 0 ≤ i < numMutations do
19.                 mutation ← randomMutationType
20.                 position ← randomBetween(0, |newinput|)
21.                 newinput ← mutate(newinput, mutation, position)
22.         return newinput
23.     procedure runAndSave(Prog, input, Queue)
24.         runResults ← run(Prog, input)
25.         if newCoverage(runResults, input, Queue) then
26.             addToQueue(input, Queue)
```

1https://github.com/carolemieux/afl-rb
program on and, simultaneously, collects the coverage information for the mutated inputs (Line 24), and finally adds these mutated inputs to the queue if they achieve new coverage (Line 26). An entire pass through the queue is called a cycle. Cycles are repeated (Line 3) until the fuzz testing procedure is stopped by the user.

AFL’s mutation strategies assume the input to the program under test is a sequence of bytes, and can be treated as such during mutation. AFL mutates inputs in two main stages: the deterministic (Algorithm 1, Lines 8-11) stages and the havoc (Lines 12-14) stage. All the deterministic mutation stages operate by traversing the input under mutation and applying a mutation at each position in this input. These mutations (Line 9) include bit flipping, byte flipping, arithmetic increment and decrement of integer values, replacing of bytes with “interesting” integer values (0, MAX_INT), etc. The number of mutated inputs produced in each of these stages is governed by the length of the input being mutated (Line 8). On the other hand, the havoc stage works by applying a sequence of random mutations—setting random bytes to random values, deleting or cloning subsequences of the input—to the input being mutated to produce a new input. Several mutations are applied to the original input (Line 21) before running it through the program (Line 14). The number of total havoc-mutated inputs to be produced is determined by a performance score, score (Line 7).

2.2 AFL Coverage Calculation

Above, we mentioned the role that coverage information plays in the AFL procedure. The use of this information is one of AFL’s key innovations. Specifically, AFL uses this information to select inputs for mutation and save new inputs, saving only those that have achieved new program coverage. In order to collect this coverage information efficiently, AFL inserts instrumentation into the program under test. To track coverage, it first associates each basic block with a random number via instrumentation. The random number is treated as the unique ID of the basic block. The basic block IDs are then used to generate unique IDs for the transitions between pairs of basic blocks. In particular, for a transition from basic block A to B, AFL uses the IDs of each basic block—ID(A) and ID(B), respectively—to define the ID of the transition, ID(A → B), as follows:

\[
ID(A \rightarrow B) \overset{def}{=} (ID(A) \gg 1) \oplus ID(B).
\]

Right-shifting (\(\gg\)) the basic block ID of the transition start block (A) ensures that the transition from A to B has a different ID from the transition from B to A. We associate the notion of basic block transition with that of a branch in the program’s control flow graph, and throughout the paper we will use the term branch to refer to this AFL-defined basic block transition unless stated otherwise.

The coverage of the program under test on a given input is collected as a set of pairs of the form (branch ID, branch hits). If a (branch ID, branch hits) pair is present in the coverage set, it denotes that during the execution of the program on the input, the branch with ID branch ID was exercised branch hits number of times. The hits are bucketized to small powers of two. AFL refers this set of pairs as the path of an input. AFL says that an input achieves new coverage if it discovers a new (branch ID, branch hits) pair.

2.3 Limitations of AFL

While AFL’s search strategy is guided by coverage, we observed in our experiments that often AFL fails to cover some important functionalities of the program under test. Note that achieving good coverage is precursor to finding bugs and crashes—if a program region is not covered, there is no way AFL can find bugs or crashes in that region.

Consider the code fragment shown in Figure 1. It is adapted from the parser.c file used in liblex2’s xmllint utility. AFL found many security vulnerabilities in this library in the past [51]. We ran AFL on this benchmark for 24 hours, repeating this experiment 20 times (see Section 4 for more experimental details). Only in one of these 24-hour runs did AFL produce an input passing Line 1. Even then, AFL failed to explore the contents of any of the if statements in Lines 6-30. As such, it failed to explore the large quantity of code after Line 31 (mostly omitted in Figure 1). Since this code is not even covered, then AFL simply cannot find any bugs in it.

The key reason AFL is unable to produce inputs covering any of this code—even after discovering an input containing <!ATTLIST— is that AFL mutates bytes paying no attention to which byte values are required to cover particular parts of the program. For example, after having produced the input <!ATTLIST BD, AFL will not prioritize mutation of the bytes after <!ATTLIST. Instead, it is as likely to produce the mutants <!CATLST BD, <!ATTLIST BD, or <?!ATTLIST BD as it is to produce <!ATTLIST BD. However, to explore the code in Figure 1, once AFL discovers <!ATTLIST BD, it should not mutate the <!ATTLIST part of this input. To see why, suppose that the production of an input like <!ATTLIST BD—with the token “ID”—is required to pass the processing code omitted in Line 3 of Figure 1. Preventing the modification of <!ATTLIST increases AFL’s probability of generating <!ATTLIST BD by at least 6X. Figure 2 illustrates how restricting mutation to only the last two characters of the input yields to a smaller space of mutants to explore, and thus, a higher probability of discovering an input that will get deeper into the program.

2.4 Overview of FairFuzz

We propose a two-pronged approach that addresses this concern but can be smoothly integrated into AFL or other mutation-based fuzzers. It works as follows.

The first part of our approach is the identification of statements like the if statement in Line 1 of Figure 1, which potentially guard large unvisited regions of code. For this, we utilize the observation that such statements are usually hit by very few of AFL’s generated inputs (i.e. they are rare), and can thus be easily identified by keeping the track of the number of inputs which hit each branch. Intuitively, the code guarded by a branch hit by few inputs is much less likely to have been thoroughly explored than the code guarded by a branch hit by a huge percentage of generated inputs.

Having identified these rare branches for targeted fuzzing, we modify the input mutation strategy in order to keep the condition of the rare branch satisfied. Specifically, we use a deterministic mutation phase to approximately determine the parts of the input that cannot be mutated for mutants to hit the rare branch. The subsequent mutation stages are then not allowed to mutate these crucial parts of the input. As a result, we significantly increase the
In this section we introduce the mutation mask for a given input, x, and a testing target, T. We say \textit{satisfies}(x, T) is true if input x satisfies T.

\textbf{Definition 1.} A \textit{mutation} is a tuple (c, m), where m is the number of bytes inserted by the mutation and c is one of the following mutation categories:

- \textit{O:} overwrites m bytes starting at position k with some values,
- \textit{I:} inserts some sequence of m bytes at position k,
- \textit{D:} deletes m bytes starting at position k.

To fully specify mutations with $c \in \{O, I\}$, the values that are inserted or written over existing bytes must be specified. Given an input x, a mutation $\mu = (c, m)$, and a position $i \in [0, |x| - m)$, let $\text{mutate}(x, \mu, i)$ denote the input produced by applying mutation μ on x at position i.

\textbf{Definition 2.} The \textit{mutation mask} for an input x and a testing target T is a function $\text{mask}_{x, T}: N \to \mathcal{P}([0, I, D])$ which takes a position i in the input x and returns a subset of $[0, I, D]$. We say that a mutation category $c \in \text{mask}_{x, T}(i)$ if $\text{satisfies}(\text{mutate}(x, (c, 1), i), T)$ is true. That is, if c is in the set $\text{mask}_{x, T}(i)$, then after applying a mutation of category c at position i on x, the resulting input will satisfy the target T.

Intuitively, the mutation mask specifies whether the input produced from mutating x at position i will (likely) reach the testing target. With this mask, given a mutation $\mu = (c, m)$ at position k, we can compute

$$\text{okToMutate}(\text{mask}_{x, T}, \mu, k) = \bigvee_{i=k}^{k+m-1} c \in \text{mask}_{x, T}(i).$$

We describe the algorithm to compute $\text{mask}_{x, T}(i)$ in Section 3.2.2.
Algorithm 2 FairFuzz algorithm. Differences from the AFL algorithm are highlighted in gray.

1: procedure FairFuzz(Prog, Seeds)
2: Queue ← Seeds
3: while true do
4: for input in Queue do
5: rarestBranch ← RARESTHitBy(Prog, input, numHits)
6: if numHits[rarestBranch] > rarity_cutoff then
7: continue
8: score ← PERFORMANCE_SCORE(Prog, input)
9: mask ← COMPUTE_MASK(Prog, input, rarestBranch)
10: for 0 ≤ i < |input| do
11: for mutation in deterministicMutationTypes do
12: if ¬okToMutate(mask, mutation, i) then
13: continue
14: newinput ← MUTATE(input, mutation, i)
15: runAndSave(Prog, newinput, Queue)
16: for 0 ≤ i < score do
17: newinput ← MUTATE_HAVOC(input, mutation, position)
18: runAndSave(Prog, newinput, Queue)
19: end for
20: end for
21: numMutations ← RANDOM_BETWEEN(1,256)
22: newinput ← input
23: for 0 ≤ i < numMutations do
24: mutation ← RANDOM_MUTATION_TYPE
25: position ← RANDOM_OK_TO_MUTATE(mask, mutation)
26: newinput ← MUTATE(newinput, mutation, position)
27: end for
28: return newinput
29: procedure runAndSave(Prog, input, Queue)
30: runResults ← run(Prog, input)
31: for branch in runResults do
32: numHits[branch] += 1
33: end for
34: ADD_TO_QUEUE(input, Queue)
35: end procedure

3.1 Biassing Mutation with the Mutation Mask. FairFuzz uses okToMutate(mask_x, T, µ, k) to bias mutations towards the testing target as follows.

In the deterministic mutation stages (Algorithm 2, Line 10-15), okToMutate is used to filter out mutants that could violate the testing target, as illustrated in Line 12 of Algorithm 2. In particular, for a given mutation type µ and position i, if okToMutate(mask_x, T, µ, i) is true, the mutant x’ = mutate(x, µ, i) is generated and passed to runAndSave. Otherwise, FairFuzz skips the mutant.

Recall that during the havoc stage, mutants are created by choosing a random mutation and random position at which to apply it. FairFuzz selects the random mutation µ = (c, m) as AFL does (Algorithm 2, Line 23). However, instead of selecting the position at random between 0 and |newinput| − m − 1, as in Algorithm 1, Line 20, FairFuzz chooses the position randomly from the subset of ok-to-mutate positions (Algorithm 2, Line 24). Precisely, the call to randomOkToMutate(mask_x, T, µ) in Line 24 of Algorithm 2 is: sampleUniform({i ∈ [0, |x|−m−1] : okToMutate(mask_x, T, µ, i)}).

If the set of ok-to-mutate positions is empty, FairFuzz skips the mutation in Line 25 and chooses a new µ = (c, m) at the next iteration of the havoc mutation inner loop (Line 22).

3.2 Targeting Rare Branches

So far we have kept the testing target abstract. In this section, we concretize it by elaborating the definition of rare branches and giving the concrete algorithm which FairFuzz uses to compute the mutation mask for rare branches.

3.2.1 Selecting Inputs to Mutate. To bias input generation towards rare branches, FairFuzz selects only inputs that hit rare branches for mutation. First, we formalize the concept of a rare branch.

Definition 3. We say that an input x hits a branch b, denoted hits(x, b), if the execution of the program on x exercises the branch b at least once.

The hit count of a branch is the number of produced inputs i which have exercised the branch. More formally,

Definition 4. Let I be the set of all inputs produced by fuzzing so far. The hit count of branch b is

numHits[b] = |{x ∈ I : hits(x, b)}|.

Concretely, numHits is kept as a map of branches to hit count, updated every time a mutant is run (Line 30 of Algorithm 2). To establish numHits, FairFuzz runs one round of mutation on the seed input with no masking.

A natural idea is to designate the n branches hit by the fewest inputs as rare, or the branches hit by less than p percent of inputs to be rare. After some initial experiments, we rejected these methods as (a) they can fail to capture what it means to be rare (e.g. if n = 5 and the two rarest branches are hit by 20 and 15,000 inputs, both would be “rare”), and (b) these thresholds need to be modified for different benchmarks. Instead, we define a rare branch as one whose hit count is smaller than a dynamic rarity cutoff as follows. Let B be the set of all branches in the program.

Definition 5. Let B_r = {b ∈ B : numHits[b] > 0}. A rare branch is a branch b such that

numHits[b] ≤ rarity_cutoff

where

rarity_cutoff = 2^i such that 2^{i-1} < \min_{b \in B_r} (numHits[b]) ≤ 2^i.

For example, if the branch hit by the fewest inputs has been hit by 17 inputs, any branch hit by ≤ 2^5 inputs is rare.

To determine whether an inputs hits a rare branch, FairFuzz computes the rarest branch hit by the input:

Definition 6. Let branches(x) = {b ∈ B : hits(x, b)}. Then the rarest branch hit by input x is the branch b\star such that

b\star = \arg \min_{b \in branches(x)} numHits[b].

Then, FairFuzz selects only inputs whose rarest branch is a rare branch for mutation (Line 6 of Algorithm 2).

Although FairFuzz only selects inputs using the above strategy, it could run some of the cycles using AFL’s default strategy. This would ensure that it does not skip the default strategies of AFL, which might be better for creating crash-prone inputs.
Algorithm 3 Computing the mutation mask in FairFuzz.

1: procedure COMPUTEMASK((prog, input, branch))
2: mask ← INITWITHEMPTYSET(|input|)
3: for 0 ≤ i < |input| do
4: input0 ← MUTATE(input, flipByte, i)
5: if branch ∈ BRANCHSHITBV(prog, input0) then
6: mask[i] ← mask[i] ∪ {0}
7: input ← MUTATE(input, addRandomByte, i)
8: if branch ∈ BRANCHSHITBV(prog, input) then
9: mask[i] ← mask[i] ∪ {1}
10: inputD ← MUTATE(input, deleteByte, i)
11: if branch ∈ BRANCHSHITBV(prog, inputD) then
12: mask[i] ← mask[i] ∪ {D}
13: return mask

3.2.2 Computation of the Mutation Mask. Algorithm 3 outlines how FairFuzz computes $mask_{c,b}$ for a given input x and rare branch b. The algorithm works as follows.

For each position i in the input, FairFuzz produces the mutants x^O by flipping the byte at position i (Line 4 of Algorithm 3), x^I by adding a random byte at position i (Line 7), and x^D by deleting the byte at position i (Line 10). Then, for each x^c, FairFuzz determines whether $hit(x^c, b)$ by running x^c through the program (captured in BRANCHSHITBV on Lines 5, 8, 11). Finally, if x^c hits b, FairFuzz notes the position i as overwritable (O), insertable (I), or deletable (D), respectively (Lines 6, 9, 12). While the calculation is illustrated as separate from the deterministic mutation stages in Algorithm 2, the two are integrated in the implementation. Since the mask computation adds only two new deterministic mutation types to AFL (byte-flipping is a default mutation type), the computation adds negligible overhead to stock AFL.

Of course, this computation of $O \in mask_{c,b}(i)$ and $I \in mask_{c,b}(i)$ is approximate—FairFuzz doesn’t check whether every value overwriten or inserted results in b being hit. Unfortunately, trying all possible values to insert or write is too expensive and produces too many redundant inputs. Empirically we find this approximation produces an effective mutation mask (see Section 4.2).

Finally, note that this algorithm could be easily adapted to other testing targets by replacing $hit(x^c, b)$ with $satisfies(x^c, T)$.

3.3 Trimming Inputs for Testing Targets

AFL’s efficiency depends on large part on its ability to quickly produce and modify inputs [54]. Thus, it is important to make sure the deterministic mutation stage—and in FairFuzz, mutation mask computation—is efficient. Since the runtime of the computation is linear in the length of the selected input, FairFuzz needs to keep the length of the inputs in the queue short. AFL has two techniques for keeping inputs short: (1) prioritizing short inputs when selecting inputs for mutation and (2) trimming (an efficient approximation of delta-debugging [55]) the parent input before mutating it. This trimming is omitted from Algorithms 1 and 2 for clarity. Trimming attempts to minimize the input to mutate with the constraint that the minimized input hits the same path (set of (branch ID, branch hits)) as the un-minimized one. However, this constraint is not good enough for reducing the length of inputs when very long inputs are chosen. FairFuzz may do this since it selects inputs based only on whether they hit a rare branch. We found that we can make inputs shorter in spite of this if we relax the trimming constraint. In particular, we relax the constraint to require that the minimized input hits only the target branch of the original input, instead of the same path as the original input. Similar relaxation could be done for other testing targets. We refer to FairFuzz with this relaxed constraint as FairFuzz with trimming.

4 IMPLEMENTATION AND EVALUATION

We implemented FairFuzz as an open source tool built on top of AFL. The implementation adds around 600 lines of C code to the file containing AFL’s core implementation.

We evaluated FairFuzz on 9 different real-world benchmarks. We selected these from those favored for evaluation by the AFL creator (djpeg from libjpeg-turbo-1.5.1, and reading from libpng-1.6.29), those used in AFLFast’s evaluation (tcpcmd -nr from tcpcmd-4.9.0; and nm, objdump -d, readelf -a, and c++filt from GNU binutils-2.28) and a few benchmarks with more complex input grammars in which AFL has previously found vulnerabilities (mutool draw from mupdf-1.9, and xmlint from libxml2-2.94). Since some of these input formats had AFL dictionaries and some did not, we ran all the evaluation without dictionaries to level out the playing field. In each case we seeded the fuzzing run with the inputs in the corresponding AFL testcases directories (except c++filt, which was seeded with the input “.Z1f\n”); for PNG we used only not_kitty.png.

4.1 Coverage Compared to Prior Techniques

In this section of evaluation we compare three popular versions of AFL against FairFuzz, all based off of AFL version 2.40b.

(1) “AFL” is the vanilla AFL available from AFL’s website.

(2) “FidgetyAFL” [52] is AFL run without deterministic mutations.

(3) “AFLFast.new” [9] is AFLFast run without deterministic stage and with the cut-off-exponential exploration strategy.

Configurations (2) and (3) are the fastest-performing versions of AFL and AFLFast, respectively. We compare to 1) for baseline reference. We ran FairFuzz with input trimming for the testing target and omitting all deterministic stages except those necessary to compute the mutation mask.

We ran each technique for 24 hours (on a single core) on each benchmark. We repeated each 24 hour experiment 20 times for each benchmark. We ran our experiments for 24 hours as the fuzzing process does not have a defined end-time and this is a runtime used in prior work [11, 37, 42, 46]. We repeated our experiments 20 times because fuzz testing is an inherently non-deterministic process, and so is its performance. This enabled us to report results that are statistically significant in Section 4.1.1.

4.1.1 Overall Branch Coverage Achieved. We begin by analyzing coverage achieved by different techniques through time. The main metric we report is basic block transitions covered, which is close to the notion of branch coverage used in real-world software testing.

Why branch coverage? Other than basic block transitions (i.e., branches) covered, the only other commonly used metric to evaluate AFL coverage is AFL path coverage. As mentioned in Section 2.2,
Figure 3: Number of basic block transitions (AFL branches) covered by different AFL techniques averaged over 20 runs (bands represent 95% C.I.s).

Figure 3 plots, for each benchmark and technique, the average number of branches covered over all 20 runs at each time point (dark central line) and 95% confidence intervals in branches covered at each time point (shaded region around line) over the 20 runs for each benchmark. For the confidence intervals we assume Student’s t distribution (taking 2.0860 times the standard error).

From Figure 3, we see that on all benchmarks except c++filt, FairFuzz achieves the upper bound in coverage, generally showing the most rapid increase in coverage at the beginning of execution.

Note that while FairFuzz keeps a sizeable lead on the xmllint benchmark (Figure 3), it does so with wide variability. Closer analysis reveals that one run of FairFuzz on xmllint was buggy, and no inputs were selected for mutation—this run covered no more than 6160 branches. However, FairFuzz had two runs on xmllint covering an exceptional 7969 and 10990 branches, respectively.

Figure 4, shows, at every hour, for how many benchmarks each technique has the lead in coverage. By lead we mean its average
coverage is above the confidence intervals of the other techniques, and no other technique’s average lies within its confidence interval. We say two techniques are tied if one’s average lies within the confidence interval of the other. If techniques tie for the lead, the benchmark is counted for both techniques in Figure 4, which is why the number of benchmarks at each hour may add up to more than 9. This figure shows that FairFuzz quickly achieves a lead in coverage on nearly all benchmarks and is not surpassed in coverage by the other techniques in our time limits.

4.1.2 Detailed Analysis of Coverage Differences. Figure 3 shows there are three benchmarks (c++filt, tcpdump, and xmllint) on which one technique achieves a statistically significant lead in AFL’s branch coverage after 24 hours (with AFLFast.new leading on c++filt and FairFuzz on the other two). We were curious as to what these branch coverage increases corresponded to in terms of source code coverage differences.

Since AFL saves all inputs that achieve new program coverage (i.e. that are placed in the queue) to disk, we can replicate what program coverage was achieved in each run by replaying these queue elements through the programs under test. Since each benchmark was run 20 times, we take the union (over each technique) of inputs in the queue for all 20 runs. We ran the union of the inputs for each technique through their corresponding programs and then ran lcov on the results to reveal coverage differences. Using the union is a generous approach and can only reveal which regions of source code coverage differences.

Since AFL saves all inputs that achieve new program coverage (i.e. that are placed in the queue) to disk, we can replicate what program coverage was achieved in each run by replaying these queue elements through the programs under test. Since each benchmark was run 20 times, we take the union (over each technique) of inputs in the queue for all 20 runs. We ran the union of the inputs for each technique through their corresponding programs and then ran lcov on the results to reveal coverage differences. Using the union is a generous approach and can only reveal which regions of source code coverage differences.

Since AFL saves all inputs that achieve new program coverage (i.e. that are placed in the queue) to disk, we can replicate what program coverage was achieved in each run by replaying these queue elements through the programs under test. Since each benchmark was run 20 times, we take the union (over each technique) of inputs in the queue for all 20 runs. We ran the union of the inputs for each technique through their corresponding programs and then ran lcov on the results to reveal coverage differences. Using the union is a generous approach and can only reveal which regions of source code coverage differences.

Since AFL saves all inputs that achieve new program coverage (i.e. that are placed in the queue) to disk, we can replicate what program coverage was achieved in each run by replaying these queue elements through the programs under test. Since each benchmark was run 20 times, we take the union (over each technique) of inputs in the queue for all 20 runs. We ran the union of the inputs for each technique through their corresponding programs and then ran lcov on the results to reveal coverage differences. Using the union is a generous approach and can only reveal which regions of source code coverage differences.

Safety-related keywords. Table 1 shows the number of runs which produced subsequences of <!ATTLIST block covered by the inputs above, whose code is outlined in Figure 1. While both AFL and FairFuzz had a run discovering the sequence <!ATTLIST, of all the saved inputs for AFL in that run, only 0.4% of them (18) visited Line 2 of Figure 1, resulting in 18 hits of the line. In contrast, we found that 12.3% (1169) of the saved inputs produced by FairFuzz in the run where it discovered <!ATTLIST visited Line 2 of Figure 1, resulting 2124 hits of the line. With two orders of magnitude more hits of this line, it is obvious that FairFuzz was better able to explore the code in Figure 1. We believe the orders of magnitude difference can be attributed to the mutation mask.

Finally, as is obvious from the example inputs above, although FairFuzz discovered more keywords, the inputs it produced were not necessarily more well-formed. Nonetheless, these inputs allowed the FairFuzz to explore more of the program’s faults. This is reflected in the coverage of a large case statement differentiating 57 error messages in parser.c. These messages do not result in AFL “crashes” (i.e. segmentation faults), simply in non-zero exit codes. Both FidgetyAFL and AFLFast.new cover only 22 of these cases, AFL covers 33, and FairFuzz covers 39.

tcpdump. Like xmllint, tcpdump has extensive nested structure, with the presence of various sequences in the input leading to different printing functions. We observed that coverage for tcpdump differs a bit for all four techniques over a variety of different files, but see the biggest gains in three files printing certain packet types (print-forces.c, print-llc.c, and print-snmp.c).

The coverage gains in these files suggest FairFuzz is better able to automatically detect sequences in the inputs necessary to increase program coverage. For example, unlike the other three techniques, FairFuzz was able to create files that have legal ForCES (RFC 5810) packet length. FairFuzz was also able to create IEEE 802.2 Logical Link Control (LLC) packets with the organizationally unique identifier (OUI) corresponding to RFC 2684, and subsequently explore the many subtypes of this OUI. Finally, in the Simple Network Management Protocol parser, FairFuzz was able to create inputs corresponding to Trap PDUs, as well as some inputs with a correct SNMPv3 user-based security message header.

We note these gains in coverage seem less impressive than those of FairFuzz on xmllint, even though the performance in Figure 3 looks similar. This appears to be because FairFuzz gets consistently higher coverage of tcpdump instead of covering parts of

<table>
<thead>
<tr>
<th>sequence</th>
<th>AFL</th>
<th>FidgetyAFL</th>
<th>AFLFast.new</th>
<th>FairFuzz</th>
</tr>
</thead>
<tbody>
<tr>
<td><!ATTLIST</td>
<td>1</td>
<td>15</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td><!ATTI</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td><!ATTI</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4: Number of benchmarks on which each technique has the lead in coverage at each hour. A benchmark is counted for multiple techniques if two techniques are tied for the lead.
the program wholly uncoverable by the other techniques. We can see this by looking at the number of branches covered by at least one of the 20 runs (the union over the runs) and the number of branches covered at least once in all 20 the runs (the intersection over the runs). For tcpdump, FairFuzz has a consistent increase in the intersection of coverage (FairFuzz’s contains 11,293 branches compared to AFLFast.new’s 10,724), but a smaller gain in the union (FairFuzz’s is 16,129, while AFLFast.new’s is 15,929). On the other hand, the intersection of coverage for xmlint is virtually the same for all techniques except stock AFL (5,876 for FidgetyAFL, 5,778 for AFLFast.new and 5,884 for FairFuzz, maybe because of the buggy run mentioned in Section 4.1.1), but FairFuzz’s union of coverage (11,681) contains over 4,000 more branches than that of AFLFast.new (7,222).

c++filt. The differences in terms of source code coverage between techniques were much more minimal for c++filt than for tcpdump or xmlint. For example, FairFuzz covers 3 lines in cp-demangle.c that AFLFast.new does not, related to demangling binary components when the operator has a certain opcode. On the other hand, AFLFast.new covers a branch where xmalloc_failed(INT_MAX) is called when a length bound comparison fails, while FairFuzz fails to produce an input long enough to violate the length bound. FairFuzz also fails to cover a branch in cxxfilt.c taken when the length of input read into c++filt surpasses the length of the input buffer allocated to store it.

FairFuzz’s inability to produce very long inputs may be related to the second round of trimming FairFuzz does. Or, it could be because c++filt has highly recursive structure, so full branch coverage is not as good a exploration heuristic for this program. A testing target other than hitting rare branches may be better suited for programs like c++filt.

The pattern we see from this analysis is that FairFuzz is better able to automatically discover input constraints and keywords—special sequences, packet lengths, organization codes—and target exploration to inputs which satisfy these constraints than the other techniques. We suspect the gains in coverage speed on benchmarks such as objdump, readpng, and readelf are due to similar factors. We conjecture the targeting of rare branches shines the most in the tcpdump and xmlint benchmarks since these programs are structured with many nested constraints, which the other techniques are unable to properly explore over the time budget (and perhaps even longer) without extreme luck.

4.2 Can Masking Effectively Target Branches?
Finally, we were curious as to whether the mutation mask strategy effectively biased mutation towards our testing target. In FairFuzz, the target was hitting the same rare branch as the parent input. We conducted the following experiment on a subset of our benchmarks to evaluate the effect of the mask.

We added a shadow mode to FairFuzz. When running in shadow mode, every time an input is selected for mutation, FairFuzz first performs all mutations without the influence of the mutation mask (the shadow run). Then, for the same input, FairFuzz performs all mutations again, using the mutation mask filtering and bias.

This shadow run allows us to compute the difference between the percentage of generated inputs hitting the target with and without the mutation mask for each parent input. Since some target branches may be easier to hit than others, this gives us a better idea of how effective the masking technique is in general. In our experiments, we ran FairFuzz with the shadow run on a subset of our benchmarks. For each benchmark we ran a cycle with target branch trimming and one without.

Our results are presented in Table 2, which shows the target branch hit percentages for the deterministic and havoc stages. These percentages are the averages—over all inputs selected for mutation in the first queueing cycle—of the percentage of children inputs hitting the target.

Overall, Table 2 shows that the mutation mask largely increases the percentage of mutated inputs hitting the target branch. The hit percentages for the deterministic stage are strikingly high. This is not unexpected because in the deterministic stage the mutation mask simply prevents mutations at locations likely to violate the target branch. Thus, the gain percentage of inputs hitting the target branch in the havoc stage is most impressive. In spite of the use of the mutation mask in the havoc stage being heuristic, we consistently see the use of the mutation mask causing a 3x-10x increase in the percentage of inputs hitting the target branch. As for trimming, it appears that extra trimming reduces the number of inputs hitting the target branch when the mutation mask is disabled but has minimal effect when the mutation mask is enabled.

Again, we note that the mutation masking technique is independent of the testing target. In particular, the fact that the branches being targeted are "rare". This suggests that this strategy could be used in a more general context. For example, we could target only the branches within a function that needs to be tested, or, if some area of the code was recently modified or bug-prone, we could target the branches in that area with the mutation mask. Recent work on targeted AFL [10] shows promise in such an application of AFL, and we believe the mutation masking technique could be used cooperatively with the power schedules presented in that work.

| Table 2: Average % of mutated inputs hitting target branch for one queueing cycle. |
|--------------------------------------|-----------------|-----------------|-----------------|-----------------|
| (a) Cycle without trimming. | det. mask | det. plain | hav. mask | hav. plain |
| xmlint | 92.8% | 46.5% | 31.8% | 6.6% |
| tcpdump | 99.0% | 74.0% | 34.2% | 9.3% |
| c++filt | 97.6% | 64.1% | 41.4% | 14.4% |
| readelf | 99.7% | 82.7% | 57.7% | 14.9% |
| readpng | 99.1% | 34.6% | 24.3% | 2.4% |
| objdump | 99.2% | 70.2% | 42.4% | 9.0% |
| (b) Cycle with trimming. | det. mask | det. plain | hav. mask | hav. plain |
| xmlint | 90.3% | 22.9% | 32.8% | 2.9% |
| tcpdump | 98.7% | 72.8% | 36.1% | 9.0% |
| c++filt | 96.6% | 14.8% | 34.4% | 1.1% |
| readelf | 99.7% | 78.2% | 55.5% | 11.4% |
| readpng | 97.8% | 39.0% | 24.0% | 2.4% |
| objdump | 99.2% | 66.7% | 46.2% | 7.6% |
coverage under mutation, symbolic execution tools [13, 22, 44, 45] methodically explore the program under test by capturing path constraints and directly producing inputs which fit yet-unexplored path constraints. The cost of this precision is that it can lead to the path explosion problem, which causes scalability issues.

Traditional blackbox fuzzers such as zzuf [30] mutate user-provided seed inputs according to a mutation ratio, which may need to be adjusted to the program under test. BFF [33] and SymFuzz [14] adapt this parameter automatically, by measuring crash density and doing input bit dependence, respectively. These optimizations are not relevant to AFL-type fuzzers which do not use this mutation ratio parameter.

There exist several fuzzers highly optimized for certain input file structures, including network protocols [4, 12], and source code [31, 43, 49]. FairFuzz is of much lower specificity so will not be as effective as these tools on these specific input formats. However, its method is fully automatic, requiring neither user inputs [4] or extensive tuning [43, 49].

While FairFuzz uses its mutation mask to try and fix important parts of program inputs, recent work has more explicitly tried to automatically learn input formats. Learn&Fuzz [23] uses sequence-based learning methods to learn the structure of PDF objects, AutoGraf [52] proposes a taint analysis-based approach to learning input grammars, while GLADE [8] uses an iterative approach and repeated calls to an oracle to learn a context-free grammar for a set of inputs. FairFuzz does not assume a corpus of valid inputs of any size from which validity could be automatically learned, nor an oracle for the grammar, but consequently does not learn as precise a grammar of the input.

Another approach to smarter fuzzing is to find locations in seed inputs related to likely crash locations in the program and focus mutation there [20, 26, 48] and TaintScope [48]. These directed methods are not directly comparable to FairFuzz since they do not have the same goal of increasing program coverage. VUZzer [42] uses both static and dynamic analysis to get immediate values and input positions used in comparisons. It uses a Markov Chain model to decide which parts of the program should be targeted, as opposed to our empirical approach.

Randoo [41] automatically generates test cases for object oriented-programs through feedback-directed random test generation. Evosuite [19] uses seed inputs and genetic algorithms to achieve high code coverage. Both these techniques focus on generating sequences of method calls to test programs, not byte-sequence inputs for a given program like FairFuzz.

Search-based software testing (SBST) [24, 25, 27–29, 35, 38, 39, 50] uses optimization techniques such as hill climbing and genetic algorithms to generate inputs that optimize some observable fitness function. These techniques work well when the fitness curve is smooth with respect to changes in the input, which is not the case in coverage-based greybox fuzzing.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants CCF-1409872 and CCF-1423645. Thanks to Rohan Padhye, Kevin Lueuf, and the anonymous reviewers for their extensive feedback on this paper.