
Investigating Program Behavior
Using the Texada LTL Specifications Miner

Caroline Lemieux, Ivan Beschastnikh
Computer Science

University of British Columbia
Vancouver, BC, Canada

Abstract—Temporal specifications, relating program events
through time, are useful for tasks ranging from bug detection
to program comprehension. Unfortunately, such specifications
are often lacking from system descriptions, leading researchers
to investigate methods for inferring these specifications from
code, execution traces, code comments, and other artifacts. This
paper describes Texada, a tool to dynamically mine temporal
specifications in LTL from traces of program activity. We review
Texada’s key features and demonstrate how it can be used to
investigate program behavior through two scenarios: validating
an implementation that solves the dining philosophers problem
and supporting comprehension of a stack implementation. We
also detail Texada’s other, more advanced, usage options. Texada
is an open source tool: https://bitbucket.org/bestchai/texada

I. INTRODUCTION

Program specifications, or formal descriptions of expected
program behavior, are helpful in various software engineering
tasks. Specifications can help in bug detection [19], model
creation [2] and test case generation [3]; they can help with
manageability by capturing what is important [9]; and, being
more concise than code, they can help to document intended
program behaviour [8]. However, specifying behavior can be
tedious or difficult, and the resulting specifications can fall out
of date as the system changes. Developers, therefore, rarely
write down specifications of their programs.

One way to overcome the lack of specifications is to
infer, or mine, specifications from existing program artifacts.
For example, a constraint like “a lock must be claimed before

entering function ata_dev_select()”, can be extracted stati-
cally source code or comments [16]. An alternative source of
information, and the focus of this paper, is dynamic program
behavior, which reflects actual program execution.

This paper overviews Texada, a tool for mining linear
temporal logic [7] (LTL) property instances (matching a user-
defined temporal property type) from traces of program be-
havior, or logs. Figure 1 illustrates the inputs to Texada and
the corresponding outputs through an example. At the top
of the Figure is a log, consisting of four traces of methods
manipulating a Queue instance. The second input below is the
property type “x always precedes y”, which we express in
LTL as ¬y W x1. This property type is included in the Texada
distribution so that a user can input this pre-defined property
template without needing to compose the LTL expression
directly. The output for this log has four property instances
(bottom of Figure 1). The first three instances indicate that
the newQueue() method invocation precedes all other method

1¬y W x ≡ Fy→ (¬y U x) ≡ G(¬y) ∨ (¬y U x)

newQueue()
isEmpty()
enqueue()
isEmpty()

newQueue()
enqueue()
isEmpty()
dequeue()

newQueue()
enqueue()
enqueue()
dequeue()
dequeue()

newQueue()
isEmpty()
isEmpty()
isEmpty()

Log:

Property type:

Texada

Trace 1 Trace 2 Trace 3 Trace 4

Property
instances:

or “ always precedes ”x y

¬dequeue() W enqueue()

¬y W x

¬isEmpty() W newQueue()

¬enqueue() W newQueue()

¬dequeue() W newQueue()

Fig. 1. (Top) Example inputs to Texada, including a sample log of traces
containing method invocations for a Queue object instance, and a property
type. (Bottom) Texada’s four mined property instances output. An instance
is an LTL formula based on the input property type that evaluates to true on
each execution in the input log.

calls (i.e., it is the first event in every trace). The last property
instance, ¬dequeue() W enqueue(), implies that the dequeue()

method is never invoked before enqueue(). So, in these traces
the Queue instance is used without violating its API contract.

Texada uses LTL to relate dynamic program behaviors, or
events, that appear in a textual log file. The events are user-
defined with regular expressions (not shown in Figure 1) and
may represent a variety of program features. For example, Tex-
ada can be used to analyze console logs generated with printf

statements (events are logged messages), stack traces produced
by stack-tracing tools [1] (events are function names), syscall
traces produced by tools like strace (events are system calls),
and output from other tools that track program information at
runtime and emit a text file.

A key feature of Texada is its use of an LTL property type
(e.g., ¬y W x in Figure 1). This property type has no structural
constraints: the user can specify any LTL property type without
writing new code. This feature distinguishes Texada from prior
tools that mine a specific set of pre-defined LTL types [9]–
[11], [18], [19]. The Texada repository contains 67 pre-defined
property types based on prior work [2], [6], [19], including all
of the ones mentioned in this paper. These types are usable
without needing to compose any LTL and can be run in
aggregate against an input log.

The Texada algorithms are described in another publica-

P0

P2

P1

P3

P4

Fig. 2. A dining philosophers illustration with five philosophers (P0–P4).

tion [13]. This paper illustrates how Texada can be used to
investigate complex program behavior. We (1) use Texada to
validate a solution to the dining philosophers problem, and (2)
show how Texada can help understand the usage of the stack
data structure.

II. TEXADA USAGE SCENARIOS

Texada can be used as a command line tool or from a web
interface2. Below, as we proceed through the two scenarios,
we explain each command line option to Texada and also give
the Texada running time3. The traces and arguments used in
each example are available in the Texada repository, so that
the given results can be replicated.
Validating a solution to the dining philosophers problem.
If a developer knows the specification of a system, Texada
can be used to verify whether the specification holds on a
set of observed runtime traces from the system. To illustrate
this, we use an implementation of the dining philosophers
problem (Figure 2). In this classic concurrency problem, the
goal is to feed a set of philosophers who are sitting at a
table (representing threads of execution) and have to share
chopsticks (representing shared resources) to access food on
their plates. Between any two adjacent philosophers is one
chopstick, which can be held by only one philosopher at a
time (exclusive access). A philosopher can be in one of three
states: thinking (not accessing chopsticks), hungry (intending
to access chopsticks), or eating (actively accessing chopsticks).

We use a multi-threaded Java implementation of a solution
to the dining philosophers problem created by Stephen J. Hart-
ley. We modified the logging statements in this implementation
to output the state of each of the five philosophers whenever
one of them changes state. To study the resulting log we
use Texada’s multi-propositional trace parsing feature, which
allows us to reason about traces where more than one atomic
proposition occurs at a time point. In this scenario, we consider
each philosopher’s state to be an atomic proposition.

We used a log consisting of 5 one minute traces of the
implementation and found that the implementation (in those
minutes) satisfied several correctness properties of the dining
philosophers problem.

1. Any two adjacent philosophers, i and j, should
never eat at the same time. In LTL: G(“i is EATING”→
¬“j is EATING”). We use Texada to derive this set of properties
with: ./texada -m -f ’G(x->!y)’ --parse-mult-prop log.txt4.
The output involving philosopher i = 2 included:

2https://bitbucket.org/bestchai/texada
3Texada revision 0335014 on a machine running 64-bit Ubuntu 14.04 TLS

with 8GB RAM and an Intel i5 Haswell quad-core 3.2GHz processor
4Throughout this paper we use log.txt to represent the file containing the

log we are mining.

G("2 is EATING" -> !"1 is EATING")
G("2 is EATING" -> !"3 is EATING")
G("2 is EATING" -> !"2 is HUNGRY")
G("2 is EATING" -> !"2 is THINKING")

Texada generated similar output for the other four philoso-
phers. The first two properties in this output confirm our
expected invariant: philosopher 2 cannot eat at the same time
as philosopher 1 or philosopher 3. The bottom two properties
confirm the more obvious invariant that philosopher 2 can only
be in one state at a time.

2. If we let the solution run long enough, we may be able
to detect another desirable property: eventually, non-adjacent
philosophers get to eat at the same time. That is, for non-
adjacent philosophers i and k, we would like to make sure
that eventually i is EATING and k is EATING co-occur. Any
interesting solution to the problem should satisfy this property.

This information is in fact implicit in the Texada output
from the previous query, with property type G(x → (¬y)).
Since for the binding of “2 is EATING” to x, the only bindings
to y were “1 is EATING”, “3 is EATING”, “2 is HUNGRY” and
“2 is THINKING”, clearly at some point all other events co-
occurred with “2 is EATING” (and similarly for philosophers
0, 1, 3, and 4). This equivalence comes from the fact that
¬G(x → (¬y)) ≡ ¬G(¬x ∨ ¬y) ≡ F(x ∧ y). However,
the absence of the instantiations of G(x → (¬y)) with x
and y bound to non-adjacent philosophers eating in Texada’s
output simply indicates these instantiations were invalidated
on at least one trace, not necessarily on all traces. If we
explicitly check for F(x∧ y)5, we will observe, amongst other
instantiations, the following output:

F("0 is EATING" & "2 is EATING")
F("0 is EATING" & "3 is EATING")
F("1 is EATING" & "3 is EATING")
F("1 is EATING" & "4 is EATING")
F("2 is EATING" & "4 is EATING")

This confirms that pairs of non-adjacent philosophers eventu-
ally get to eat at the same time in all traces.

The queries in this scenario illustrate how a developer
can use Texada to study a non-trivial concurrent program.
In this case we used Texada to validate that the runtime
traces generated by a solution to the dining philosophers
problem satisfy basic correctness and concurrency properties.
The commands took 0.035 to 0.044s to run on the log, which
consisted of 5 traces, 1088 time points (5440 total events), and
15 unique event types.
Comprehension of stack usage. Texada’s flexibility in tem-
poral property inference makes it well-suited for supporting
program comprehension tasks. In the second scenario, we
analyze a log with method call traces for a stack data structure.
Our goal is to understand how this stack is exercised. In this
case, the stack implementation is a Java program provided with
the Daikon tool [8] that implements a stack using an array.
Note that in this implementation, pop is called topAndPop().

First, we want to know if all elements in the stack are
always removed. Here, we use Texada’s support and support
potential statistics (detailed further in Section IV). For the
G(x) property, the support is the number of x occurrences

5./texada -m -f ’F(x & y)’ --parse-mult-prop log.txt

and the support potential is the total number of events.
Setting --conf-threshold to 0 outputs all instantiations; -

-use-global-thresholds sets this threshold over the entire log
and --print-stats prints out global statistics for each in-
stantiation. Running ./texada -l -f ’G(x)’ --conf-threshold

0 --use-global-thresholds --print-stats log.txt, we see the
following output:

G(push(java.lang.Object))
support: 654
support potential: 8212
confidence: 0.0796

G(topAndPop())
support: 402
support potential: 8212
confidence: 0.0490

There are clearly more objects pushed onto the stack than
popped off (i.e., 654 > 402). Notwithstanding possible ex-
ceptional situations, it is likely that several objects are never
removed from the stack in this scenario. To learn more about
the order in which push and pop are called, we mine the “x
is always followed by y” rule. We summarize Texada’s results
by grouping all outputted y instantiations in { } brackets:

G("isFull()" -> XF{"isEmpty()", "top()"})
G("push(java.lang.Object)" ->

XF{"isEmpty()", "isFull()",
"top()", "topAndPop()"})

G("topAndPop()" ->
XF{"isEmpty()", "isFull()",

"top()"})
G("top()" -> XF"isEmpty()")

Above we see that despite the fact that not all of the objects
are popped off the stack, at least some object must be,
since G("push(java.lang.Object)" -> XF"topAndPop()") holds.
We also see that pop is always followed by top, which gives
us some information about the workflow.

Finally, we might want to check whether pop is ever called
before push; this is a pattern we do not necessarily expect to
witness when a human exercises a queue and which could
be unsafe. For this, we try to mine “x always precedes y”
(¬y W x). Since all we are interested in is what needs to
happen before pop, we use Texada’s constant event option
(-e) to bind y to topAndPop(). The full command is ./texada

-m -f ’!"topAndPop()" W x’ -e ’topAndPop()’ log.txt and the
output is:

!"topAndPop()" W {"isEmpty()", "isFull()",
"StackAr(int)", "top()"}

Interestingly, we see that push does not appear bound to x,
meaning that push does not always precede pop. So in some
runs, pop is called before push. As our focus has been on the
relationship between push and pop, it might be informative to
check the method calls that always precede push; binding y to
push(java.lang.Object) returns:

!"push(java.lang.Object)" W
{"isEmpty()", "isFull()",
"StackAr(int)", "top()", "topAndPop()"}

The above tells us that in all executions, any call to push was
preceded by a call to pop. This is unusual; we might want to
check if this stack has a guard mechanism to protect against

calls to pop on an empty stack. For this we mine instances
of “x is always immediately followed by y”, or G(x→ Xy)).
Texada outputs the following instances:

G("topAndPop()" -> X"isEmpty()")
G("top()" -> X"isEmpty()")
G("push(java.lang.Object)" -> X"isFull()")
G("makeEmpty()" -> X"isFull()")

The output supports the idea that the system has guards in place
to prevent over and under flow; isEmpty() is always called
immediately after the call to pop, suggesting that it is called
within the method. Similarly, isFull() appears to be called
within push.

With these few calls to Texada, we have learned that the
system calls more pushes than pops, likely contains guards to
prevent over and under flow, and has no strict rules on push
and pop method call order; in fact, pop appears to always be
called before push. The runtimes of these commands ranged
between 0.034s and 0.065s. The log consisted of 87 traces,
totaling 8211 events and 7 unique event types.

In both scenarios Texada was useful because we had a
precise idea of which “correct” invariants we were looking
for. In general, it may be difficult to tell the difference
between correct and incorrect invariants [15]. Invariant filtering
mechanisms, either built into or on top of Texada, may be
necessary to make Texada accessible to more users.

III. TEXADA DESIGN

This section overviews Texada’s design. A more detailed
treatment of Texada’s algorithms and design appears in our
previous paper [13]. Figure 3 illustrates Texada’s high level
operation. Texada works by taking an input log and a property
type, and then steps through the process illustrated in Figure
3 to output the instantiations of that property type which are
valid over the log. We describe the steps below.

Parsing the log. The input execution traces are parsed into
an interpretable format (step 1 in Figure 3) using user-supplied
regular expressions (see Section IV). The parsed unique event
types are passed to the property instance generator.

Texada supports two trace representations: linear and map.
The linear representation is the natural one, consisting of an
ordered sequence of trace events which must be traversed
sequentially. The map representation is a set of maps, each
of which represents a trace: the keys are trace events and the
values are sets of positions at which the event occurs.

Parsing property types. We use the SPOT [5] LTL parser
to parse the input LTL property type into a tree structure (step 2
in Figure 3). An example of such an LTL formula tree is shown
in Figure 3. Our checking of property instances is based on
traversal of the property tree. We use this tree representation to
eliminate redundant computation by performing checking state
memoization, since two instantiations of the same property
type may have nearly identical tree representations.

Our version of LTL is an extension of propositional logic
with the following temporal operators6:

• X(p): p occurs at the next time point
• p U q: p holds up to the first occurrence of q (which

must exist)

6We also support the W, R, and M operators, which are variations of U.

Property Type

Log
Parser

SPOT
LTL

Parser

Property
Instance

Generator

event
types

LTL formula tree

Property
Instance
Checker

property
instances

parsed log

Valid Property Instances

Texada

Execution Traces

QueueAr(int)
makeEmpty()
isEmpty()
isFull()
getFront()
isEmpty()
isEmpty()

...

always followed by

1

2
3

4

G

X

F

x

y

Fig. 3. Overview of the Texada process on a log generated by the execution of a queue.

• F(p): eventually p occurs
• G(p): p holds at every time point in the future

In our version of LTL, we use a specialized finite trace
semantics to evaluate property instances on finite traces.

Creating the space of property instances. The event
types taken from the parsed input traces, along with the LTL
formula tree, are passed into a property instance generator,
which creates the space of property instances (step 3 in Figure
3). The space of property instances is by default generated
on-the-fly, cycling through all possible bindings of events to
property type variables. Pre-generating the instantiations is also
an option. By default, bindings where two unique variables are
bound to the same event are eliminated.

Checking property instances over traces. Finally, prop-
erty types are checked against the input execution traces (step
4 in Figure 3). Checking property instances over the linear
and map representations of a log requires different algorithms.
The checking procedure over the linear trace benefits from
the natural linear definition of LTL operators, making it both
extensible and reliable. The algorithm proceeds by traversing
the LTL formula tree (like the one in Figure 3); at each node,
it applies the formal definition of the nodes to the trace, often
traversing the trace multiple times, which limits its scalability.

In contrast, the map trace algorithm uses the fact that
most LTL operators, apart from the next operator, rely on
the relative positions of events in the trace instead of their
absolute positions. This algorithm also traverses the LTL for-
mula tree, but employs the subroutines find-first-occurrence

and find-last-occurrence to determine whether a high-level
node in the formula tree holds (instead of just getting the
result of checking at the nodes). Because this algorithm can
‘skip’ over large sections of the trace, for many property
types it is more efficient than the linear checker. However, the
map optimizations preclude the careful checking necessary to
calculate support, support potential, and confidence statistics.
The map checker also involves some memoization and is
generally the option to choose if efficiency is desired.

This concludes the outline of Texada’s overall design. We
now make some notes regarding its performance.

Memoizing checking state. Texada checks nearly all
property instances on each trace (it stops checking a prop-
erty instance when an invalidating trace is found). Because
these instantiations may share the assignment of events to
variables in the property template, Texada will needlessly
repeat the checking computation. Memoizing of checking state

avoids this by storing the checking results from prior runs
(for a specific trace position and a formula tree node). The
memoization is currently implemented in the map checker’s
find-first-occurrence and find-last-occurrence subroutines.

Runtime performance. Our extensive evaluation [13]
demonstrates that Texada performs favorably against a spe-
cialized property type miner, Synoptic [2]. Texada’s map miner
mines the Synoptic property types faster than Synoptic over all
parameters (increasing trace length, trace number, and number
of unique events). For example, mining the Synoptic property
types on a log of twenty 10,000-event long traces with 980
unique events, Texada’s map miner took 59s compared to
Synoptic’s 69s. We believe that Texada is sufficiently fast to
accommodate a variety of log input sizes and use-cases.

IV. OTHER USAGE OPTIONS

Besides the basic options reviewed in Section II, Texada
includes a number of advanced options that we explain here.

Parsing the input log. In the scenarios we elided the
log format, assuming that the logs are in a format that is
compatible with Texada. However, Texada supports custom
regular expressions (regexes) to extract relevant events from
log lines. Using the -r option, a user can input a list of regular
expressions, each specifying the structure of a matching log
line. The regex arguments require a capturing group with the
name <ETYPE>. The Texada parser (step 1 in Figure 3) attempts
to match each log line with one of these regular expressions,
in order. If a match is found, the string captured by the named
group <ETYPE> becomes the event type of the line7.

Mining temporal properties from a single execution is
brittle, so Texada works best when there are multiple traces
in the log file. The user can specify a custom trace separator
regular expression, using --trace-separator, which partitions
the sequence of lines in a log into traces8.

If the -i or --ignore-nm-lines option is not specified,
Texada will stop and show an error when a line fails to match
the provided regular expressions. With the -i option Texada
will instead ignore non-matching lines.

Texada includes several distinct algorithms – each of which
can mine LTL property instances – which have different
trade-offs. The user must specify either the linear (-l or -

-linear-trace) or the map (-m or --map-trace) checker algo-
rithm, both of which were detailed in Section III.

7The default regex is (?<ETYPE>.*)
8The default trace separator is --

Property instance generation. As discussed in Section III,
Texada is configured to generate property instances on the fly.
It can be configured to pre-generate property instances with
the --pregen-instants option.

By default, Texada will not allow distinct variables in the
input formula to be bound to the same event. For example,
if the input formula is G(x → XFy), Texada will not check
if G(a → XFa) holds on a log. This double-binding can be
enabled with the --allow-same-bindings flag.

Property support and confidence thresholds. While we
used a confidence threshold in the comprehension of stack
usage scenario, the topic of support, support potential, and
confidence warrants some further detail. Briefly, support po-
tential is the number of time points where the property type
could be falsified; support is the number of such time points
where the property type is not falsified, and confidence is the
ratio of support to support potential.

For example, we expect the support potential of “a is
always followed by b” to be the number of a events, and its
support to be the number of a events which are eventually
followed by a b event. We expect both support and confidence
to rise if more a events which are followed by b are added to
a trace; if a events not followed by b are added to a trace, we
would like support potential to increase while support stays
constant, lowering confidence. Note that in this formulation
the addition of b events or unrelated events has no effect on
the confidence of this property instance. The “a is always
followed by b” case is the ideal one for support and support
potential, and these statistics are currently approximated for
other property types, but may not quite reflect our intuition
about what they should be. See our previous publication [13]
for more details.

These statistics can help a user to reason about property
instances that hold over a fraction of the traces, but perhaps not
all traces (or not completely on all traces). While these thresh-
olds may help the user analyze imperfect traces, Texada has
no mechanism reason about traces or logs beyond determining
the satisfiability of property instances. A log that requires data
cleaning should be pre-processed prior to being used as input
to Texada.

A series of options allow the user to specify thresholds for
these statistics for output property instantiations with the linear
checker. These thresholds can be set with --sup-threshold, -

-sup-pot-threshold and --conf-threshold; the default values
for these thresholds are 0, 0, and 1 respectively. The -

-no-vacuous-findings option stops Texada from outputting
vacuously true (invalidated but not concretely supported) ex-
pressions by setting the support threshold to 1. Note that
enabling these options will cause a slowdown in the linear
checker. The option --use-global-thresholds sets all the input
thresholds as global (over the entire log instead of over each
individual trace). This option causes even more slowdown
since some inter-trace optimizations can no longer be used.
Full statistics for each outputted instantiation can be printed
with the --print-stats option (though this will disable most
optimizations).

V. RELATED WORK

Texada is not the only temporal specification mining tool,
but is to our knowledge the only one supporting fully gen-
eral user-specified templates. Van der Aalst et al. developed

an almost-fully general LTL checker tool [17], whose logic
resembles the Texada linear algorithm’s logic, but can only
check one property instance, as opposed to discovering valid
property instances from a specified pattern.

Unlike prior work [12], [14], [19], which focuses on mining
a few specific temporal patterns, Texada allows users to infer
properties matching any pattern expressible in LTL. Since LTL
may not be widely known, the Texada tool provides LTL
version of the patterns in Dwyer et al.’s work on temporal
specifications [6], the Perracotta patterns [19], and the property
types used by the Synoptic miner [2], giving a total of 67
included property types.

Several specification miners are based around the response
pattern, “y responds to x” or “x is always followed by y”, as
we have called it previously. Perracotta mines 8 variations of
the response patterns out of execution traces, forming larger
patterns by chaining the strictest response pattern (i.e., (xy)∗),
which the authors call “alternating” [19]. Javert mines both
the alternating and resource allocation (i.e., (xy+z)∗) patterns
from dynamic traces, and combines these into even more com-
plex patterns [9]; the authors have also developed an algorithm
to mine these based on binary decision diagrams [10].

Researchers have also developed methods to handle im-
perfect traces by computing, as just one example, prop-
erty instance interestingness scores. The Perracotta tool has
thresholds for property interestingness; Gabel et al. develop
thresholds as part of their BDD-based inference tool [11];
and Lo et al. allow users to specify support and confidence
thresholds to determine which mined properties are statistically
significant [4].

Texada can mine all the properties these tools mine, and
most of their templates are distributed with Texada. Another
contrasting feature is that Texada includes algorithms to com-
pute support and confidence measures, which can be used
on imperfect traces or to allow the user to input thresholds
for statistical significance. In addition, we have found that
Texada’s performance compares favorably to the performance
of a specialized invariant miner found in Synoptic [2].

VI. CONCLUSION

This paper overviewed the Texada tool, which mines arbi-
trary LTL properties over textual logs regardless of the prop-
erties’ form. We presented two usage scenarios to demonstrate
how Texada can be used to (1) validate key properties of a con-
current program, and (2) support comprehension of program
behavior. We believe that Texada is generally applicable and
is especially useful for constructing more advanced analyses
tools that require LTL specification mining. For example,
we have used Texada to mine temporal properties between
data invariants, an unanticipated use-case of the tool. Texada
is distributed with 67 pre-defined property types from prior
work [2], [6], [19]. Texada is an open source tool and is
available at: https://bitbucket.org/bestchai/texada

ACKNOWLEDGMENTS

This project has been funded by an NSERC discovery
award, an NSERC USRA award, and the Office of the Privacy
Commissioner of Canada (OPC); the views expressed herein
are those of the author(s) and do not necessarily reflect those
of the OPC.

REFERENCES
[1] D. Arnold, D. Ahn, B. de Supinski, G. Lee, B. Miller, and M. Schulz.

Stack Trace Analysis for Large Scale Debugging. In Proceedings of
the 21st International Parallel and Distributed Processing Symposium
(IPDPS), 2007.

[2] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst.
Leveraging Existing Instrumentation to Automatically Infer Invariant-
Constrained Models. In Proceedings of the 19th International Sympo-
sium on the Foundations of Software Engineering (FSE), 2011.

[3] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating
Test Cases for Specification Mining. In Proceedings of the 2010
International Symposium on Software Testing and Analysis (ISSTA),
2010.

[4] S.-C. K. David Lo and C. Liu. Mining temporal rules for software
maintenance. Journal of Software Maintenance and Evolution: Research
and Practice, 20(4):227–247, 2008.

[5] A. Duret-Lutz and D. Poitrenaud. SPOT: an Extensible Model Check-
ing Library using Transition-based Generalized Büchi Automata. In
Proceedings of the 12th Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems
(MASCOTS), 2004.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property
Specifications for Finite-state Verification. In Proceedings of the 21st
International Conference on Software Engineering (ICSE), 1999.

[7] E. A. Emerson. Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics, chapter Temporal and Modal Logic,
pages 995–1072. J. van Leeuwen, ed., North-Holland Pub. Co./MIT
Press, 1990.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
Discovering Likely Program Invariants to Support Program Evolution.
IEEE Transactions on Software Engineering, 27(2):99–123, 2001.

[9] M. Gabel and Z. Su. Javert: Fully Automatic Mining of General
Temporal Properties from Dynamic Traces. In Proceedings of the 16th
International Symposium on the Foundations of Software Engineering
(FSE), 2008.

[10] M. Gabel and Z. Su. Symbolic Mining of Temporal Specifications.
In Proceedings of the 30th International Conference on Software
Engineering (ICSE), 2008.

[11] M. Gabel and Z. Su. Online Inference and Enforcement of Temporal
Properties. In Proceedings of the 32nd International Conference on
Software Engineering (ICSE), 2010.

[12] H. B. Giles Reger and D. Rydeheard. A Pattern-Based Approach to
Parametric Specification Mining. In Proceedings of the 28th Interna-
tional Conference on Automated Software Engineering (ASE), 2013.

[13] C. Lemieux, D. Park, and I. Beschastnikh. General LTL Specification
Mining. In Proceedings of the 30th International Conference on
Automated Software Engineering (ASE), 2015.

[14] W. Li, A. Forin, and S. A. Seshia. Scalable Specification Mining
for Verification and Diagnosis. In Proceedings of the 47th Design
Automation Conference (DAC), 2010.

[15] M. Staats, S. Hong, M. Kim, and G. Rothermel. Understanding
User Understanding: Determining Correctness of Generated Program
Invariants. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis (ISSTA), 2012.

[16] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*Icomment: Bugs or Bad
Comments?*/. In Proceedings of the 21st Symposium on Operating
Systems Principles (SOSP), 2007.

[17] W. van der Aalst, H. de Beer, and B. van Dongen. Process Mining and
Verification of Properties: An Approach Based on Temporal Logic. In
On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, volume 3760 of Lecture Notes in Computer Science, pages
130–147. 2005.

[18] W. Weimer and G. C. Necula. Mining Temporal Specifications for
Error Detection. In Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2005.

[19] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta:
Mining Temporal API Rules from Imperfect Traces. In Proceedings
of the 28th International Conference on Software Engineering (ICSE),
2006.

