
Functions Review: WWPD

print(print(“one”) and 2 and print(“tHrE3”))

Call Expressions

A call expression calls a function on its arguments.

1.
2.
3.

wears_jacket(100, True)

operator operands

Call Expressions

A call expression calls a function on its arguments.

1. Evaluate the operator to get a function.
2. Evaluate the operand(s) from left to right.
3. Apply the value of the operator on the value(s) of the operand(s).

wears_jacket(100, True)

operator operands

Boolean Stuff in Python

False-y

-

Truth-y

-

Boolean Stuff in Python

False-y

- False
- 0
- None
- “ ”, [], { }

Truth-y

- True
- 1
- -1
- “Hello”
- Almost everything else

Boolean Logic

And

Or

Boolean Logic

And
- first false-y or last truth-y value (and stops evaluating there)

- “Are you free Saturday and Sunday?”

Or
- first truth-y or last false-y value (and stops evaluating there)

- “Are you free Saturday or Sunday?”

Discussion 1:

Caroline Lemieux (clemieux@berkeley.edu)
January 31, 2019

Slides adapted from Nancy Shaw’s

Announcements

● HW 1 due tonight
● Lab 0 & Lab 1 due tomorrow
● Hog project

○ Phase 1 due next Tuesday
○ Whole project due next Thursday (can work with partners)

● There are office hours tonight 6:30-8:00 if you need last minute help!

Agenda

● Concept check
● Announcements
● Anything you want to add to the agenda?
● Review of Functions & Control
● Environment Diagrams

Control

Control Review

n = 0

if n < 10:

 print(“1”)

elif n >= 0:

 print(2)

Control Review

n = 0

if n < 10:

 print(“1”)

elif n >= 0:

 print(2)

1

Control Review

n = 0

if n < 10:

 print(1)

if n >= 0:

 print(2)

Control Review

n = 0

if n < 10:

 print(1)

if n >= 0:

 print(2)

1
2

Control Review

n = 100

if n < 10:

 print(1)

print(2)

Control Review

n = 100

if n < 10:

 print(1)

print(2)

2

Control Review

n = 100

if n == 100:

 print(1)

print(2)

1
2

TRY 1.1

Iteration

while <cond>:

 <body>

● Keep evaluating body until <cond> is false-y
○ Should make sure it’s eventually false!

TRY 1.2 & 1.3

Summary

False Values: True Values:
False, 0, None, Everything
[], “ ”, { } else

And: first false, last true value

Or: first true, last false value

if <cond>:
 ...
elif <cond>:
 ...
else:
 ...

while <cond>:
 ...

Any number of
these

Optional

Keep evaluating
body until False-y

SLIDE STOLEN FROM THE GREAT CHRIST ALLSMAN

Attendance

links.cs61a.org/caro-disc

Environment Diagrams

Assignment Statements

x = 10 % 4
y = x
x **= 2

Assignment Statements

1. Evaluate the right!
2. Var | Val

def Statements

def double(x):
return x * 2

def triple(x):
return x * 3

hmmm = double
double = triple

Try it!

def Statements

1. Create a function thingy (intrinsic name,
parameters, and parent)

2. FUNC | ---------> to thingy

def Statements

1. Create a function object (intrinsic name,
parameters, and parent)

2. FUNC | ---------> to object

● Note: function values are objects that are
POINTED POINTED POINTED to

● (only values are not pointed at. Objects which you will learn later and lists are pointed at as well)

● DO NOT evaluate the body of the function

def Statements

def double(x):
return x * 2

def triple(x):
return x * 3

hmmm = double
double = triple

Try it!

Call expressions

def double(x):
return x * 2

hmmm = double
wow = double(3)
hmmm(wow)

Call Expressions

b(a)

operator operand

● Follow the golden rules of evaluation:

○ Evaluate operator

○ Evaluate operands

○ Apply operator to operands

● Call expressions create new frames!

Creating Frames

● Label frame # (f1, f2, f3)

● Label frame with function’s intrinsic name (the
thing being pointed at)

● Label with the parent (defined earlier)

Call Expressions

● Bind parameters to arguments (what you
pass in aka the stuff in the parentheses)

● Evaluate body using the golden rules

● At end, be sure to put the return value
(default is None)

Call expressions

def double(x):
return x * 2

hmmm = double
wow = double(3)
hmmm(wow)

Try it!

Lookups

● When trying to find the value of a variable:
○ If it’s in your current frame, great!

○ If not, look in the parent of your frame, then in
your parent’s parent, and so on

○ If there are no more parents (you’re in the
global frame), it doesn’t exist!

LET’S PUT IT ALL TOGETHER!

Assignment Statements:

Evaluate
RHS

Make binding in
current frame

Def Statements:

Don’t go into
body yet

Make binding in
current frame

[P = G]

Call Expressions:

f1 [P = G]
Label w/ index,
name, parent

Bind arguments to
parameters

Return something

[P = G]

2.4

from operator import add
def sub(a, b):

sub = add
return a - b

add = sub
sub = min
print(add(2, sub(2, 3)))

Common Misconceptions

When do you draw the pointer
(vs not)?

Common Misconceptions

return f vs return f()

How do you know when you
should call a function and need
to open a new frame?

Common Misconceptions

f(a(2))

Which frame do I open first?
Function f or function a?

Common Misconceptions

x = 4
y = x
a = func
b = a

Why is 4 copied but why is func not?
(ie. why are there not two copies of func)

