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How to go through iterables without calling next
for i in iterable goes through all the things in iterable, by calling next

Calling list(iterable) makes a list of all the things we get by calling next



Do 1.1



Pausing vs. stopping a video

Kind of like yield Kind of like return
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def generate_up_to(n):
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yield i
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Concept check: yield vs return
def generate_up_to(n):

for i in range(0, n):

return i

>>> generate_up_to(5)

0

>>> generate_up_to(5)

0

Calling a regular functions “plays” 
that function, until return, where it 
“stops” 

When we call it again, it “plays” 
from the start 



Yield from
def generate_up_to(n):

for i in range(0, n):

yield i

def generate_up_to(n):

yield from range(0,n) 

Same thing!



Recursive generator
def generate_down_to_zero(n):

if n == 0:

yield 0

else:

yield n

yield from generate_down_to_zero(n-1)



Do 1.1 (the other 1.1)



Attendance
links.cs61a.org/caro-disc            next(cats)



Streams (back to scheme)



An infinite natural number generator in Python
(demo) 



An infinite natural number generator… in scheme?
(demo) 



What’s a stream:
A “lazy” scheme list

- Lazy because it evaluates its first element….
- … but then is lazy and doesn’t evaluate the second
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2. Construct promise containing operand2
3. Return a pair (val1, promise of operand2)
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Stream Recap
1. nil is the empty stream
2. cons-stream constructs a stream
3. car gets the first element of the stream
4. cdr-stream computes and returns the rest of the stream (it only computes 

once, and saves the value)
a. Promise is “forced” if we’ve computed its value


