
Discussion 10:
Iterators, Generators and Streams
Nancy Shaw (nshaw99@berkeley.edu)
Caroline Lemieux (clemieux@berkeley.edu)
April 18th, 2019

Iterators and Generators

Iterators vs. Iterables
s = “am a string”

i = iter(s)

Iterators vs. Iterables
s = “am a string”

i = iter(s)

str is an iterable

Iterators vs. Iterables
s = “am a string”

i = iter(s)

str is an iterable

get its iterator with iter()

Iterators vs. Iterables
s = “am a string”

i = iter(s)

“am a string”

i

str is an iterable

get its iterator with iter()

Iterators vs. Iterables
s = “am a string”

i = iter(s)

“am a string”

i

str is an iterable

get its iterator with iter()

next(s)

Iterators vs. Iterables
s = “am a string”

i = iter(s)

“am a string”

i

str is an iterable

get its iterator with iter()

next(s)

ERROR

Iterators vs. Iterables
s = “am a string”

i = iter(s)

“am a string”

i

str is an iterable

get its iterator with iter()

next(s)

ERROR

next(i)

Iterators vs. Iterables
s = “am a string”

i = iter(s)

“am a string”

i

str is an iterable

get its iterator with iter()

next(s)

ERROR

next(i)

“a”

Iterators vs. Iterables
s = “am a string”

i = iter(s)

“am a string”

i

str is an iterable

get its iterator with iter()

next(s)

ERROR

next(i)

“a”
next(i)

Iterators vs. Iterables
s = “am a string”

i = iter(s)

“am a string”

i

str is an iterable

get its iterator with iter()

next(s)

ERROR

next(i)

“a”

“m”

next(i)

How to go through iterables without calling next
for i in iterable goes through all the things in iterable, by calling next

Calling list(iterable) makes a list of all the things we get by calling next

Do 1.1

Pausing vs. stopping a video

Kind of like yield Kind of like return

Generators
def generate_up_to(n):

for i in range(0, n):

yield i

Generators
def generate_up_to(n):

for i in range(0, n):

yield i

>>> generate_up_to(5)

<generator object ...>

Generators
def generate_up_to(n):

for i in range(0, n):

yield i

>>> generate_up_to(5)

<generator object ...>

When python sees a yield in a
function, calling that function
returns a generator

Generators
def generate_up_to(n):

for i in range(0, n):

yield i

>>> generate_up_to(5)

<generator object ...>

>>> g = generate_up_to(5)

>>> next(g)

When python sees a yield in a
function, calling that function
returns a generator

Calling next on the generator
“plays” that function, until yield,
where it “pauses”

Generators
def generate_up_to(n):

for i in range(0, n):

yield i

>>> generate_up_to(5)

<generator object ...>

>>> g = generate_up_to(5)

>>> next(g)

0

When python sees a yield in a
function, calling that function
returns a generator

Calling next on the generator
“plays” that function, until yield,
where it “pauses”

Generators
def generate_up_to(n):

for i in range(0, n):

yield i

>>> generate_up_to(5)

<generator object ...>

>>> g = generate_up_to(5)

>>> next(g)

0

>>> next(g)

1

When python sees a yield in a
function, calling that function
returns a generator

Calling next on the generator
“plays” that function, until yield,
where it “pauses”

Concept check: yield vs return
def generate_up_to(n):

for i in range(0, n):

return i

>>> generate_up_to(5)

Concept check: yield vs return
def generate_up_to(n):

for i in range(0, n):

return i

>>> generate_up_to(5)

0

Concept check: yield vs return
def generate_up_to(n):

for i in range(0, n):

return i

>>> generate_up_to(5)

0

Calling a regular functions “plays”
that function, until return, where it
“stops”

Concept check: yield vs return
def generate_up_to(n):

for i in range(0, n):

return i

>>> generate_up_to(5)

0

>>> generate_up_to(5)

Calling a regular functions “plays”
that function, until return, where it
“stops”

Concept check: yield vs return
def generate_up_to(n):

for i in range(0, n):

return i

>>> generate_up_to(5)

0

>>> generate_up_to(5)

0

Calling a regular functions “plays”
that function, until return, where it
“stops”

Concept check: yield vs return
def generate_up_to(n):

for i in range(0, n):

return i

>>> generate_up_to(5)

0

>>> generate_up_to(5)

0

Calling a regular functions “plays”
that function, until return, where it
“stops”

When we call it again, it “plays”
from the start

Yield from
def generate_up_to(n):

for i in range(0, n):

yield i

def generate_up_to(n):

yield from range(0,n)

Same thing!

Recursive generator
def generate_down_to_zero(n):

if n == 0:

yield 0

else:

yield n

yield from generate_down_to_zero(n-1)

Do 1.1 (the other 1.1)

Attendance
links.cs61a.org/caro-disc next(cats)

Streams (back to scheme)

An infinite natural number generator in Python
(demo)

An infinite natural number generator… in scheme?
(demo)

What’s a stream:
A “lazy” scheme list

- Lazy because it evaluates its first element….
- … but then is lazy and doesn’t evaluate the second

How do I make a stream?
(cons-stream <operand1> <operand2>)

Another special form!

1. Evaluate operand1 to get val1
2. Construct promise containing operand2
3. Return a pair (val1, promise of operand2)

How do I make a stream?
(cons-stream <operand1> <operand2>)

Another special form!

1. Evaluate operand1 to get val1
2. Construct promise containing operand2
3. Return a pair (val1, promise of operand2)

(demo)

How do I make a stream?
(cons-stream <operand1> <operand2>)

Another special form!

1. Evaluate operand1 to get val1
2. Construct promise containing operand2
3. Return a pair (val1, promise of operand2)

Need special (cdr-stream s) to get the cdr properly

Important: cdr-stream evalutes its value once, then saves that for later calls

How do I make a stream?
(cons-stream <operand1> <operand2>)

Another special form!

1. Evaluate operand1 to get val1
2. Construct promise containing operand2
3. Return a pair (val1, promise of operand2)

Need special (cdr-stream s) to get the cdr properly

Important: cdr-stream evalutes its value once, then saves that for later calls

(demo)

Stream Recap
1. nil is the empty stream
2. cons-stream constructs a stream
3. car gets the first element of the stream
4. cdr-stream computes and returns the rest of the stream (it only computes

once, and saves the value)
a. Promise is “forced” if we’ve computed its value

