
Discussion 11:
SQL

Caroline Lemieux (clemieux@berkeley.edu)
April 25th, 2019

Review:
SQL Basics

SELECT c.name
FROM parents, dogs as p, dogs as c
WHERE p.name = parent and

c.name = child and
p.fur = c.fur;

parents = {“Delano”: “Filmore”, ...}
fur = {“Delano”: “curly”,

“Filmore”: “smooth”, ...}

names = []
for key in fur:

child_fur = fur[key]
parent_fur = fur[parents[key]]
if child_fur == parent_fur:

names.append(key)

SQL (declarative): “give me all the
children who have the same fur as their
parents”

Python (imperative): “store
child-parent relations and fur info as
dictionaries. Go through each of the
keys in fur, see if child/parent match, …”

Declarative Programming

● SQL is a declarative language.

○ Your code describes what you want the final result to look like

○ SQL takes care of how it works underneath; does optimizations

that you don’t have to understand or deal with

○ Cleaner, more readable, and faster if you’re just trying to

store/manipulate large amounts of data

Syntax: Creating a table

CREATE TABLE records AS
SELECT “Ben” AS first, “Bitdiddle” AS last, 12 AS age UNION
SELECT “Louis”, “Reasoner”, 25 UNION
SELECT “Oliver”, “Warbucks”, 19;

● Column names are optional after first row (can’t change them)
● Our convention: all-caps for keywords (but lowercase works too)
● Indentations and line breaks don’t matter
● Don’t forget the semicolon at the end!

Syntax: Creating a table

CREATE TABLE records AS
SELECT “Ben” AS first, “Bitdiddle” AS last, 12 AS age UNION
SELECT “Louis”, “Reasoner”, 25 UNION
SELECT “Oliver”, “Warbucks”, 19;

● Column names are optional after first row (can’t change them)
● Our convention: all-caps for keywords (but lowercase works too)
● Indentations and line breaks don’t matter
● Don’t forget the semicolon at the end!

You’ll mostly operate on pre-existing tables

SELECT first, age FROM records WHERE age > 15 ORDER BY age DESC;

Syntax: Querying

● Only SELECT and FROM are actually required -- rest are optional!
● Default order is ascending

○ Can do ORDER BY age DESC or ORDER BY -age for descending order

Louis|25
Oliver|19

Try 2.1-2.3!

Joins/Combination

Disclaimer
There are many different types of joins in SQL!

In 61A, we look at what we can do by taking a (cartesian) product + filtering

Disclaimer
There are many different types of joins in SQL!

In 61A, we look at what we can do by taking a (cartesian) product + filtering

If you’re curious about the other things, ask me after :)

Joining: Intuition
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

We want a table with the color + radiation of each fruit.

Joining: Intuition
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

We want a table with the color + radiation of each fruit.

fruit color fruit rads

apple red apple 0

banana yellow banana 3250

Joining: Intuition
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

What rows should we pair up to get this?

fruit color fruit rads

apple red apple 0

banana yellow banana 3250

Joining: Intuition
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

What rows should we pair up to get this?

fruit color fruit rads

apple red apple 0

banana yellow banana 3250

Joining: Intuition
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

What is the relationship between these matched rows?

Joining: Intuition
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

What is the relationship between these matched rows?

color.fruit = radiation.fruit

Joining: With SELECT … FROM ...
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

What is the relationship between these matched rows?

color.fruit = radiation.fruit

How do we get only those rows in SQL?

Joining: With SELECT … FROM ...
 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

What is the relationship between these matched rows?

color.fruit = radiation.fruit

How do we get only those rows in SQL?

SELECT * FROM color, radiation WHERE color.fruit = radiation.fruit

What’s happening?

 Table color

fruit color

apple red

banana yellow

watermelon green

 Table radiation

fruit rads

apple 0

banana 3250

SELECT * FROM color, radiation

→ takes the product of the two tables

What’s happening?

SELECT * FROM color, radiation

→ takes the product of the two tables

fruit color fruit rads

apple red apple 0

apple red banana 3250

banana yellow apple 0

banana yellow banana 3250

watermelon green apple 0

watermelon green banana 3250

What’s happening?

SELECT * FROM color, radiation

→ takes the product of the two tables

fruit color fruit rads

apple red apple 0

apple red banana 3250

banana yellow apple 0

banana yellow banana 3250

watermelon green apple 0

watermelon green banana 3250

We only
want
these!

What’s happening?

SELECT * FROM color, radiation WHERE color.fruit = radiation.fruit

→ takes the product of the two tables + filters

fruit color fruit rads

apple red apple 0

banana yellow banana 3250

What’s happening?

SELECT * FROM color, radiation WHERE color.fruit = radiation.fruit

→ takes the product of the two tables + filters

fruit color fruit rads

apple red apple 0

banana yellow banana 3250

This part of the WHERE is your “join condition”

Solving SQL Problems

1) Note down what information you want (read the problem)

2) Figure out which tables give you that information

a) Write FROM clause (joining)

3) Find one (or more) columns from each table that link them together

a) Write WHERE clause (filtering)

4) Write the SELECT clause (using step 1 as reference)

a) Optionally add some ordering or limit # of rows

Try 3.1-3.4!

Attendance
links.cs61a.org/caro-disc next(cats)

Reposted from Reddit

Aggregation

Aggregator Operations

● Does a calculation on all your rows to produce a single result

○ MAX, MIN, COUNT, SUM

● Important: squashes all your rows into a single row!

○ Only column values which you can access: what you calculate over

(+ with a GROUP BY, what you aggregate over)

Example
SELECT SUM(salary) FROM records

name division salary

Alyssa P Hacker Programming 75,000

Cy D Fect Programming 53,600

John Denero Programming 500,000

Eben Scrooge Accounting 24,000

Robert Cratchet Accounting 78,000

Oliver Warbucks Administration 5,000,000

Example
SELECT SUM(salary) FROM records

salary

5,730,600

Group By

● Separates your table into several temporary “mini-tables”, each of

which share the same column value

○ Ex. GROUP BY division - one group for all rows where division =

“Programmer”, one where division = “Accountant”, etc.

● Aggregation happens over each individual group, not the whole table

at once. More flexibility!

● HAVING lets you filter entire groups out, as opposed to rows (WHERE)

IMPORTANT

GROUP BY does not keep all the rows.

Each group will get squashed into a single row!!

When you GROUP BY, you are saying that you want to do things to entire

groups of rows at once, and don’t care that each group will get cut down

to one row in the end.

name division salary

Alyssa P Hacker Programming 75,000

Cy D Fect Programming 53,600

John Denero Programming 500,000

Eben Scrooge Accounting 24,000

Robert Cratchet Accounting 78,000

Oliver Warbucks Administration 5,000,000

Max salary in a division with more than one person!

name division salary

Alyssa P Hacker Programming 75,000

Cy D Fect Programming 53,600

John Denero Programming 500,000

Eben Scrooge Accounting 24,000

Robert Cratchet Accounting 78,000

Oliver Warbucks Administration 5,000,000

SELECT ______________________ FROM _____employees_____
GROUP BY ______________________ HAVING ______________________

name division salary

Alyssa P Hacker Programming 75,000

Cy D Fect Programming 53,600

John Denero Programming 500,000

Eben Scrooge Accounting 24,000

Robert Cratchet Accounting 78,000

Oliver Warbucks Administration 5,000,000

SELECT ______________________ FROM _____employees_____
GROUP BY _____division_________ HAVING ______________________

name division salary

Alyssa P Hacker Programming 75,000

Cy D Fect Programming 53,600

John Denero Programming 500,000

Eben Scrooge Accounting 24,000

Robert Cratchet Accounting 78,000

SELECT ______________________ FROM _____employees_____
GROUP BY _____division_________ HAVING ___COUNT(*) > 1____

name division salary

Alyssa P Hacker Programming 75,000

Cy D Fect Programming 53,600

John Denero Programming 500,000

Eben Scrooge Accounting 24,000

Robert Cratchet Accounting 78,000

SELECT division, MAX(salary)_ FROM _____employees_____
GROUP BY _____division_________ HAVING ___COUNT(*) > 1____

division salary

Programming 500,000

Accounting 78,000

SELECT division, MAX(salary)_ FROM _____employees_____
GROUP BY _____division_________ HAVING ___COUNT(*) > 1____

Query Order

● It can be helpful to think about SQL queries in this order:

1) Join tables to create a big table (FROM clause)

2) Filter the result (WHERE clause)

3) Split filtered result into groups (GROUP BY clause)

4) Filter the aggregated groups (HAVING clause)

5) Write out the column values you want (SELECT clause)

6) Rearrange rows to follow a certain order (ORDER BY clause)

7) Throw away extra rows (LIMIT clause)

Try 4.1-4.3!

Modifying Tables

Creating Empty Tables

CREATE TABLE dogs(name, age, phrase DEFAULT “woof”);

● List out column names
○ Can have default values for future rows

Adding to a table

INSERT INTO dogs(name, age) VALUES (“Fido”, 1), (“Sparky”, 2);

● Specify which columns you will provide, and give values row-by-row
as tuples

Adding to a table

Rules:
● If you don’t specify which columns, you must provide all values

(even default ones)

INSERT INTO dogs VALUES (“Fido”, 1, “bark”), (“Sparky”, 2, “woof”);

INSERT INTO dogs VALUES (“Fido”, 1, “bark”), (“Sparky”, 2); ERROR

● All tuples must be the same length - default arguments don’t count!

Updating a table

UPDATE dogs SET age = age + 1 WHERE age < 5;

● WHERE clause is optional - if not provided, will update all rows

Deleting from a table

DELETE FROM dogs WHERE age < 5;

● WHERE clause is optional - if not provided, will delete all rows
○ However, empty table still exists

DROP TABLE dogs;

● Deletes table entirely

Try 5.1!

Bonus Questions?
Aggregation?

