
Discussion 5:
Trees, Mutation, and Nonlocal
Caroline Lemieux (clemieux@berkeley.edu)
February 28, 2019

Administrativa

Homeworks
HW 4 due tomorrow 3/1

Projects
Maps due today!

Events
Guerrilla Section Saturday 3/2 12-2PM, Soda 271

Trees

Trees: Terminology

A tree is an ADT

A tree’s branches are individual
trees themselves.

Any confusing terminology on the first page
of the discussion?

9

4 5

2

8

3 6

1

root

branches

leaf

label

Trees: What you need to know

tree(label, branches)

label(tree)

branches(tree)

is_leaf(tree)

Square Tree (1.2)

9

45

2

8

36

1

81

1625

4

64

936

1

Given: Return:

Square Tree

9

45

2

8

36

1

square_tree(b)

16

4 9

1

A recursive call on a branch
returns a new tree with the
values of the branch squared.

Square Tree

new_label = label(t) ** 2

new_branches = [square_tree(b) for b in branches(t)]

We combine this to get our solution:

def square_tree(t):

 if is_leaf(t):

return tree(label(t) ** 2)

 new_label = label(t) ** 2

 new_branches = [square_tree(b) for b in branches(t)]

 return tree(new_root, new_branches)

Work on 1.1(height) and 1.3(tree_max)!

Try 1.4 if you have time!

Useful functions:

tree(label, branches)

label(tree)

branches(tree)

is_leaf(tree)

Work on 1.4(find_path)

links.cs61a.org/caro-disc

List Mutation

is vs ==

is: is the same thing in the box? ==: are the things in the box equal

>>> x is y
True
>>> x == y
True

is vs ==

is: is the same thing in the box? ==: are the things in the box equal

>>> x is y
False
>>> x == y
True

is vs ==

is: is the same thing in the box? ==: are the things in the box equal

>>> x is y
True
>>> x == y
True

Mutation

A list is a mutable object, meaning that we can modify its values!

We use box-and-pointer diagrams to keep track of the contents of a list.

lst[1][0] = 3

2 -4

4 1 10

0 1 2 3

0 1

lst

3 -4

4 1 10

0 1 2 3

0 1

lst

Adds el to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
lst 1 2 3 4

0 1 2 3

5

4

Adds el to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.append(6) lst 1 2 3 4

0 1 2 3

5

4

6

5

Adds el to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.append(6)
>>> lst.append([7, 8])

lst 1 2 3 4

0 1 2 3

5

4

6

5 6

7 8

0 1

Adds el to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.append(6)
>>> lst.append([7, 8])
>>> lst
[1, 2, 3, 4, 5, 6, [7, 8]]

lst 1 2 3 4

0 1 2 3

5

4

6

5 6

7 8

0 1

Adds el to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.append(6)
>>> lst.append([7, 8])
>>> lst
[1, 2, 3, 4, 5, 6, [7, 8]]

lst 1 2 3 4

0 1 2 3

5

4

6

5 6

Tip: append adds a single item to the list. No matter what,
you’ll only have to draw one more box at the end of the list.

7 8

0 1

Concatenates lst to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
lst 1 2 3 4

0 1 2 3

5

4

Concatenates lst to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8]) lst 1 2 3 4

0 1 2 3

5

4

6 7 8

5 6 7

Concatenates lst to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8])
>>> lst
[1, 2, 3, 4, 5, 6, 7, 8]

lst 1 2 3 4

0 1 2 3

5

4

6 7 8

5 6 7

Concatenates lst to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8])
>>> lst
[1, 2, 3, 4, 5, 6, 7, 8]

>>> lst = [1, 2, 3, 4, 5]
>>> lst.extend(6)

Concatenates lst to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8])
>>> lst
[1, 2, 3, 4, 5, 6, 7, 8]

>>> lst = [1, 2, 3, 4, 5]
>>> lst.extend(6)

ERROR

extend must be given a list
(or something else you can
iterate through).

Concatenates lst to the end of the list.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8])
>>> lst
[1, 2, 3, 4, 5, 6, 7, 8]

lst 1 2 3 4

0 1 2 3

5

4

6 7 8

5 6 7

Tip: there are two ways to think about extend…
- Sticks a list at the end of the original
- Goes through lst one item at a time and appends each one

Extend does the same thing as lst += [...], but is different from lst = lst + [...].

>>> a = [1, 2, 3]
>>> b = a
>>> a += [4, 5]
>>> b

Extend does the same thing as lst += [...], but is different from lst = lst + [...].

>>> a = [1, 2, 3]
>>> b = a
>>> a += [4, 5]
>>> b
[1, 2, 3, 4, 5]

Extend does the same thing as lst += [...], but is different from lst = lst + [...].

>>> a = [1, 2, 3]
>>> b = a
>>> a += [4, 5]
>>> b
[1, 2, 3, 4, 5]

Same as
a.extend([4, 5])

Extend does the same thing as lst += [...], but is different from lst = lst + [...].

>>> a = [1, 2, 3]
>>> b = a
>>> a += [4, 5]
>>> b
[1, 2, 3, 4, 5]

Same as
a.extend([4, 5])

>>> a = [1, 2, 3]
>>> b = a
>>> a = a + [4, 5]
>>> b

Extend does the same thing as lst += [...], but is different from lst = lst + [...].

>>> a = [1, 2, 3]
>>> b = a
>>> a += [4, 5]
>>> b
[1, 2, 3, 4, 5]

Same as
a.extend([4, 5])

>>> a = [1, 2, 3]
>>> b = a
>>> a = a + [4, 5]
>>> b
[1, 2, 3]

a now points to an entirely
new list! The original was
not mutated.

Inserts el at index i, shifting the rest of the elements over.

>>> lst = [1, 2, 3, 4, 5]
lst 1 2 3 4

0 1 2 3

5

4

Inserts el at index i, shifting the rest of the elements over.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.insert(2, 9) lst 1 2 3 4

0 1 2 3

5

4

Item will be
inserted at
index 2...

Inserts el at index i, shifting the rest of the elements over.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.insert(2, 9) lst 1 2 9 4

0 1 2 3

5

4

rest of list shifted
right to make
room.

5

4

Item inserted
at index 2...

Inserts el at index i, shifting the rest of the elements over.

>>> lst = [1, 2, 3, 4, 5]
>>> lst.insert(2, 9)
>>> lst
[1, 2, 2.5, 3, 4, 5]

lst 1 2 9 4

0 1 2 3

5

4

rest of list shifted
right to make
room.

5

4

Item inserted
at index 2...

remove(el): removes the first occurence of
el from the list

>>> lst = [1, “oops”, 3, 4, 5]
>>> lst.remove(“oops”)
>>> lst
[1, 3, 4, 5]

pop(i): removes and returns the element at
index i

>>> lst = [1, 2, 3, 4, “hi”]
>>> lst.pop(3)
4
>>> lst.pop() # default: last item
“hi”
>>> lst
[1, 2, 3]

NOTE: remove takes an item to look for and delete.
 pop takes an index, and returns the item that was deleted as a result.

What does the following code display?

>>> lst = [1, 2, 3, 4, 5]
>>> lst = lst.append(6)
>>> lst

a. [1, 2, 3, 4, 5, 6]
b. [1, 2, 3, 4, 5, [6]]
c. Error
d. None
e. Nothing

What does the following code display?

>>> lst = [1, 2, 3, 4, 5]
>>> lst = lst.append(6)
>>> lst

a. [1, 2, 3, 4, 5, 6]
b. [1, 2, 3, 4, 5, [6]]
c. Error
d. None
e. Nothing ← append returns None, which interpreter doesn’t display!

Mutating a list vs. Creating a list

● Slicing

○ lst[start:end:step]

● lst1 = lst1 + lst2

● lst.append(element)

● lst.extend(sequence)

● lst.insert(index, element)

● lst.remove(element)

● lst.pop(index)

● lst1 += lst2

All of above except pop return None

Work on 2.1

Draw box and pointer diagrams!!

Work on 2.2

Nonlocal and Mutable
Functions

Name lookup

x is found in local frame:

def foo():

 x = 10

 def bar(x):

 return x

return bar

foo()(3)

Takeaway: use binding in current frame if it exists and look in parent
frames if it doesn’t

x is found in parent frame:

def foo():

 x = 10

 def bar(y):

 return x + y

return bar

foo()(3)

Assignment statements

Assigning a new variable in bar:

def foo():

 x = 10

 def bar():

 x = 13

 return x

return bar

foo()()

Takeaway: Assignment statements create/modify new name bindings in
the current frame; parent frames are uninvolved

Nonlocal

By default,
● you can access variables in parent

frames.
● you cannot modify variables in parent

frames.

nonlocal statements allow you to modify
a name in a parent frame instead of
creating a new binding in the current frame.

- cannot modify variables in current frame
- cannot create bindings in parent frames

def foo():

 x = 10

 def bar():

nonlocal x

x = 13

bar()

return x

foo()

This nonlocal statement tells Python:
“Don’t create a new local variable x;
modify the one in the parent frame
instead!”

● We can keep track of things across function calls!

○ Ex: count how many times a function was called, within the function itself

● Functions are not all pure anymore…could have side effects (!!!)

○ Could mess with things in other frames

○ Calling the same function twice may give different results

● We’ve covered all the cases for variable assignment now

○ Referencing variables in local and parent frames

○ Modifying variables in local and parent frames

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

20
(local
assignment
doesn’t change
parent value)

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

def g(x):

def f():

x = 10

nonlocal x

f()

print(x)

g(20)

20
(local
assignment
doesn’t change
parent value)

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

def g(x):

def f():

x = 10

nonlocal x

f()

print(x)

g(20)

Error
(x is used
before nonlocal
declaration)

20
(local
assignment
doesn’t change
parent value)

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

def g(x):

def f():

x = 10

nonlocal x

f()

print(x)

g(20)

Error
(x is used
before nonlocal
declaration)

20
(local
assignment
doesn’t change
parent value)

def g(x):

def f():

x = x - 8

f()

print(x)

g(20)

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

def g(x):

def f():

x = 10

nonlocal x

f()

print(x)

g(20)

Error
(x is used
before nonlocal
declaration)

20
(local
assignment
doesn’t change
parent value)

def g(x):

def f():

x = x - 8

f()

print(x)

g(20)

Error
(local var ‘x’
referenced
before
assignment)

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

def g(x):

def f():

x = 10

nonlocal x

f()

print(x)

g(20)

Error
(x is used
before nonlocal
declaration)

20
(local
assignment
doesn’t change
parent value)

Error
(local var ‘x’
referenced
before
assignment)

def g(x):

def f():

x = x - 8

f()

print(x)

g(20)

def g(x):

def f():

y = 5

nonlocal x

x = 10

f()

print(x)

g(20)

def g(x):

def f():

x = 10

x = x + 2

f()

print(x)

g(20)

def g(x):

def f():

x = 10

nonlocal x

f()

print(x)

g(20)

Error
(x is used
before nonlocal
declaration)

20
(local
assignment
doesn’t change
parent value)

Error
(local var ‘x’
referenced
before
assignment)

def g(x):

def f():

x = x - 8

f()

print(x)

g(20)

def g(x):

def f():

y = 5

nonlocal x

x = 10

f()

print(x)

g(20)

10
(you can put
‘nonlocal’
wherever you
want, as long as
it’s before any
references!)

def g(x):

def f(x):

nonlocal x

x = x + 2

f(1)

print(x)

g(20)

Error
‘x’ is both a parameter (local) and
nonlocal. Python doesn’t know
which to use!

● Variable declared nonlocal must…

○ Be present in a parent frame

○ Not be in the global frame

○ Not have been declared locally in the current frame (either in the body or

as a parameter)

