Discussion 5:
Trees, Mutation, and Nonlocal

Caroline Lemieux (clemieux@berkeley.edu)
February 28, 2019

Administrativa

Homeworks
HW 4 due tomorrow 3/1

Projects
Maps due today!

Events
Guerrilla Section Saturday 3/2 12-2PM, Soda 271

Trees

Trees: Terminology

A treeisan ADT

A tree’s branches are individual
trees themselves.

Any confusing terminology on the first page
of the discussion?

o o o e e e —

————————————————————

e e o e e o o o e e e o e e e o e e

branches J

Trees: What you need to know
tree(label, branches)
label(tree)
branches(tree)

is leaf(tree)

Square Tree (1.2)

Given:

Square Tree

A recursive call on a branch

returns a new tree with the o

values of the branch squared.

(4
—» | square_tree(b) \‘ j a

e S U

— - -

Square Tree
new_label = label(t) ** 2

new_branches = [square tree(b) for b in branches(t)]

We combine this to get our solution:

def square_tree(t):
if is _leaf(t):
return tree(label(t) ** 2)
new_label = label(t) ** 2
new_branches = [square_tree(b) for b in branches(t)]
return tree(new_root, new_branches)

Work on 1.1(height) and 1.3(tree_max)!

Try 1.4 if you have time!

Useful functions:

tree(label, branches)
label (tree)
branches(tree)

is leaf(tree)

Work on 1.4(find_path)

Attendance

Blinks.cs61a.org/caro-disc

List Mutation

IS Vs ==

is: is the same thing in the box? ==: are the things in the box equal
Global frame >>> X is y
X =3 X 3 True
= 3 ==
Yy y 3 >>> X y

True

IS vs ==

is: is the same thing in the box? ==: are the things in the box equal
Global frame list S>> x is y
% = [3] 0
y = 3] X '//,_~\ﬁﬂ 3 False

y >>> X ==y
\,ist True
0
3

IS Vs ==

is: is the same thing in the box? ==: are the things in the box equal

Global frame list)
>>> X is vy

X = [3 0
~ 3] X ::::::::>‘3 True
y = X
Yy >>>X==y

True

Mutation

A list is a mutable object, meaning that we can modify its values!

We use box-and-pointer diagrams to keep track of the contents of a list.

g

1st 4

1st[1][@] = 3

1st

[

append(el)

Adds el to the end of the list.

>>> 1st = [1, 2, 3, 4, 5]
1st

append(el)

Adds el to the end of the list.

>>> 1st = [1, 2, 3, 4, 5]
>>> 1st.append(6) Ist

append(el)

Adds el to the end of the list.

>>> 1st = [1, 2, 3, 4, 5]
>>> lst.append(6)
>>> 1st.append([7, 8])

1st

append(el)

Adds el to the end of the list.

>>> 1st = [1, 2, 3, 4, 5] \
>>> lst.append(6) st | 1|2 | 3|4 |5 |6

>>> 1st.append([7, 8])
>>> lst
[1J 2) 3) 4) 5) 6) [7) 8]]

append(el)

Adds el to the end of the list.

>>> 1st = [1, 2, 3, 4, 5] \
>>> lst.append(6) st | 1|2 | 3|4 |5 |6

>>> 1st.append([7, 8])
>>> lst
[1J 2’ 3) 4) 5) 6) [7) 8]]

Tip: append adds a single item to the list. No matter what,
you’ll only have to draw one more box at the end of the list.

extend(lst)

Concatenates 1st to the end of the list.

>>> 1st = [1, 2, 3, 4, 5]
1st

extend(lst)

Concatenates 1st to the end of the list.

>>> 1st = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8]) 1st

extend(lst)

Concatenates 1st to the end of the list.

>>> 1st = [1, 2, 3, 4, 5]

>>> lst.extend([6, 7, 8]) 1st
>>> 1st

[1J 2: 3: 4: 5) 6) 7) 8]

extend(lst)

Concatenates 1st to the end of the list.

>>> 1st = [1, 2, 3, 4, 5] >>> 1st = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8]) >>> 1lst.extend(6)
>>> lst

[1J 2’ 3) 4) 5) 6) 7) 8]

extend(lst)

Concatenates 1st to the end of the list.

>>> 1st = [1, 2, 3, 4, 5] >>> 1st = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8]) >>> lst.extend(6)

>>> lst

[1, 2, 3, 4, 5, 6, 7, 8] ERROR

extend must be given a list
(or something else you can
iterate through).

extend(lst)

Concatenates 1st to the end of the list.

>>> 1st = [1, 2, 3, 4, 5]
>>> lst.extend([6, 7, 8]) 1st (1| 2| 3| 4

>>> 1st
[1J 2’ 3) 4) 5) 6) 7) 8]

Tip: there are two ways to think about extend...
- Sticks a list at the end of the original

- Goes through 1st one item at a time and appends each one

WARNING: extend and +=

Extend does the same thing as Ist +=[...], but is different from Ist = Ist + [...].

>»>a = [1, 2, 3]
>>> b = a

>>> a += [4, 5]
>»> b

WARNING: extend and +=

Extend does the same thing as Ist +=[...], but is different from Ist = Ist + [...].

>»>a = [1, 2, 3]
>>> b = a

>>> a += [4, 5]
>»> b

[1, 2: 3: 4) 5]

WARNING: extend and +=

Extend does the same thing as Ist +=[...], but is different from Ist = Ist + [...].

>»>a = [1, 2, 3]

>>> b = a Same as

>»> a += [4, 5]~ aextend(4,5)
>»> b

[1, 2: 3: 4) 5]

WARNING: extend and +=

Extend does the same thing as Ist +=[...], but is different from Ist = Ist + [...].

>»> a = [1, 2, 3] >>> a = [1, 2, 3]
>»> b = a Same as s> b = a

>>> a += [4, 5]/ a.extend([4, 5]) >>> a =a + [4, 5]
>>> b s> b

[1, 2: 3: 4) 5]

WARNING: extend and +=

Extend does the same thing as Ist +=[...], but is different from Ist = Ist + [...].

>>> a = [1, 2, 3] >>> a = [1, 2, 3]
>»> b = a Same as >»> b = a

>>> a += [4, 5]~ aextend(4,5) >>> a =a + [4, 5]
>»> b >»> b

[1, 2, 3, 4, 5] [1, 2, 3]

a now points to an entirely
new list! The original was
not mutated.

insert(i, el)

Inserts el at index i, shifting the rest of the elements over.

>>> 1st = [1, 2, 3, 4, 5]
1st 1 2 314

insert(i, el)

Inserts el at index i, shifting the rest of the elements over.

>>> 1st = [1, 2, 3, 4, 5]
>>> lst.insert(2, 9) 1st (1| 2| 3| 4

[tem will be
inserted at
index 2...

insert(i, el)

Inserts el at index i, shifting the rest of the elements over.

>>> 1st = [1, 2, 3, 4, 5]

>>> lst.insert(2,

)

1st 1 2 9 4 5

[tem inserted
at index 2...

rest of list shifted
right to make
room.

insert(i, el)

Inserts el at index i, shifting the rest of the elements over.

>>>
>>>
>>>

[1,

1st = [1, 2, 3, 4, 5]
lst.insert(2,)

1st

2, 2.5, 3, 4, 5]

1st

[tem inserted
at index 2...

rest of list shifted
right to make
room.

Removing items

remove(el): removes the first occurence of pop(i): removes and returns the element at
el from the list index 1
>>> 1st = [1, “oops”, 3, 4, 5] >>> Ist = [1, 2, 3, 4, “hi”]
>>> lst.remove(“oops”) >>> 1st.pop(3)
>>> 1st 4
[1, 3, 4, 5] >>> 1st.pop() # default: last item
f"hi”
>>> 1st
[1, 2, 3]

NOTE: remove takes an jitem to look for and delete.
pop takes an index, and returns the item that was deleted as a result.

Check for Understanding

What does the following code display?

>>»> 1st = [1, 2, 3, 4, 5]
>>> 1st = 1lst.append(6)
>>> 1st

a. [1,2,3,4,5,6]

b. [1,2,3,4,5,][6]]

c. Error

d. None

e. Nothing

Check for Understanding

What does the following code display?

>>»> 1st = [1, 2, 3, 4, 5]

>>> 1st = 1lst.append(6)

>>> 1st

a. [1,2,3,4,5,06]

b. [1,2,3,4,5,][6]]

c. Error

d. None

e. Nothing — append returns None, which interpreter doesn’t display!

Mutating a list vs. Creating a list

e |Ist.append(element) e Slicing

e Ist.extend(sequence) o lIst[start:end:step]
e Ist.insert(index, element) e |[st]=Istl+Ist2
e |stremove(element)

e Ist.pop(index)

e |stl+=Ist2

All of above except pop return None

Work on 2.1

Draw box and pointer diagrams!!

Work on 2.2

Nonlocal and Mutable
Functions

Name lookup

X is found in local frame:

def foo():
X = 10
def bar(x):
return Xx
return bar

foo()(3)

X is found in parent frame:

def foo():
X = 10
def bar(y):
return x + vy
return bar

foo()(3)

Takeaway: use binding in current frame if it exists and look in parent

frames if it doesn’t

Assignment statements

Assigning a new variable in bar:

def foo():
X = 10
def bar():
X = 13
return x
return bar

foo() ()

Takeaway: Assignment statements create/modify new name bindings in
the current frame, parent frames are uninvolved

Nonlocal

def foo():
By default, X = 10
® Yyou can access variables in parent def bar():
frames. nonlocal x
e you cannot modify variables in parent L= s
bar()
frames.
return x

nonlocal statements allow you to modify
: : foo()
a name in a parent frame instead of

creating a new binding in the current frame. This nonlocal statement tells Python:

“Don’t create a new local variable x;
modify the one in the parent frame
instead!”

- cannot modify variables in current frame
- cannot create bindings in parent frames

What does this mean?

e We can keep track of things across function calls!

o Ex: count how many times a function was called, within the function itself
e Functions are not all pure anymore...could have side effects (!!!)

o Could mess with things in other frames

o Calling the same function twice may give different results
e We've covered all the cases for variable assignment now

o Referencing variables in local and parent frames

o Modifying variables in local and frames

Warmup: WWPD?

def g
def f
10

Warmup: WWPD?

def g(x):
def f():
X = 10 20
(local
X =X+ 2 assignment
f(O) doesn’t change
print(x) parent value)

g(20)

Warmup: WWPD?

def g(x):
def f():
X = 10 20
(local
X =X+ 2 assignment
f() doesn’t change
print(x) parent value)
g(20)
def g(x):
def f():
X = 10
nonlocal x
()
print(x)

g(20)

Warmup: WWPD?

def g(x):
def f():
X = 10
X =X+ 2
f(O)
print(x)
g(20)
def g(x):
def f():
X = 10
nonlocal x
()
print(x)

g(20)

20

(local
assignment
doesn’t change
parent value)

Error

(x is used
before nonlocal
declaration)

Warmup: WWPD?

def g(x):
def f():
X = 10
X =X+ 2
f(O)
print(x)
g(20)
def g(x):
def f():
X = 10
nonlocal x
()
print(x)

g(20)

20

(local
assignment
doesn’t change
parent value)

Error

(x is used
before nonlocal
declaration)

def g(x):
def f():

()

g(20)

print(x)

X

Warmup: WWPD?

def g(x):
def f():
X = 10
X =X+ 2
f(O)
print(x)
g(20)
def g(x):
def f():
X = 10
nonlocal x
()
print(x)

g(20)

20

(local
assignment
doesn’t change
parent value)

Error

(x is used
before nonlocal
declaration)

def g(x):
def f():

()

g(20)

print(x)

X

Error
(local var ‘X’
referenced
before
assignment)

Warmup: WWPD?

def g(x):
def f():
X = 10
X =X+ 2
f(O)
print(x)
g(20)
def g(x):
def f():
X = 10
nonlocal x
()
print(x)

g(20)

20

(local
assignment
doesn’t change
parent value)

Error

(x is used
before nonlocal
declaration)

def g(x):
def f():

()
print(x)

g(20)

def g(x):
def f():
y =5
nonlocal x
X = 10
()
print(x)
g(20)

Error
(local var ‘X’
referenced
before
assignment)

Warmup: WWPD?

def g(x):
def f():
X = 10
X =X+ 2
f(O)
print(x)
g(20)
def g(x):
def f():
X = 10
nonlocal x
()
print(x)

g(20)

20

(local
assignment
doesn’t change
parent value)

Error

(x is used
before nonlocal
declaration)

def g(x):
def f():

()
print(x)

g(20)

def g(x):
def f():
y =5
nonlocal x
X = 10
()
print(x)
g(20)

Error

(local var ‘X’
referenced
before
assignment)

10

(you can put
‘nonlocal’
wherever you
want, as long as
it’'s before any
references!)

Warmup: WWPD?

def g(x):
def f(x): Error
nonlocal x ‘X’ is both a parameter (local) and
X =X+ 2 nonlocal. Python doesn’t know
(1) which to use!
print(x)

g(20)

General nonlocal rules

e Variable declared nonlocal must...
o Be presentin a parent frame
o Not be in the global frame
o Not have been declared locally in the current frame (either in the body or

as a parameter)

