
Discussion 7:
Linked Lists, OOG, & Midterm
Review
Caroline Lemieux (clemieux@berkeley.edu)
Pi Day, 2019

Announcements

Homeworks
HW 6 and Lab 7 due tomorrow!

Projects
Ants due tonight!

Midterm 2
Next Tuesday!

Linked Lists

Link Class
1) lnk.first
2) lnk.rest
3) lnk is Link.empty

Box and Pointer Diagram
From Spring 2016 MT 2:

L = Link(1, Link(2))
P = L
Q = Link(L, Link(P))
P.rest.rest = Q

Attendance

links.cs61a.org/caro-disc

Orders of Growth

Runtime

● We care about the speed of programs
● Big question: How does the runtime of a program change, or grow, as the

input size grows?
● We will be answering this question for various functions
● We answer question this by roughly estimating the number of operations as a

function of the size of the input

Input type Input size

number magnitude of number (i.e. how big the number is)

list length of the list

tree number of nodes in the tree

No growth

def square(n):
return n * n

input function call return value number of operations

1 square(1) 1*1 1

2 square(2) 2*2 1

...

100 square(100) 100*100 1

...

n square(n) n*n 1

No matter how big n is,
square(n) always only
takes 1 operation.

The runtime doesn’t grow
as the input size grows!

Big question: How does the runtime of a program change, or grow, as the input
size grows?

Proportional growth

Big question: How does the runtime of a program change, or grow, as the input
size grows?

input function
call

return value number of
operations

1 fact(1) 1*1 1

2 fact(2) 2*1*1 2

...

100 fact(100) 100*99*...*1*1 100

...

n fact(n) n*(n-1)*...*1*1 n

def fact(n):
if n == 0:

return 1
return n * fact(n-1)

The bigger n gets, the more
operations we have to do.

The runtime of this function grows
proportionally to the input size.

Big Theta Notation

For this course, we want to give an lower and upper bound on runtime.

θ(f(n)) = “The function’s runtime will no worse and no better than the f(n), where n is input size.

Order of Growth Name Description

θ(1) constant Runtime is always the same regardless of input size, e.g. square(n)

θ(log n) logarithmic Input size is repeatedly reduced by some factor

θ(n) linear Runtime is proportional to input size, e.g. factorial(n)

θ(n2), O(n3),
etc.

polynomial Variable number of operations per 1 unit of input (e.g. nested loops)

θ(2n) exponential Repeatedly multiplying the input size (e.g. tree recursion)

Recursive orders of growth

def sum_of_factorial(n):
if n == 0:

return 1
else:

return factorial(n) + sum_of_factorial(n - 1)

each call to sum_of_factorial
calls factorial, which takes O(n)
time, and sum_of_factorial(n-1),
which takes ….

factorial(n) + sum_of_factorial(n - 1)

O(n)
O(n - 1)

O(n - 2)

factorial(n - 1) + sum_of_factorial(n - 2)

factorial(n - 2) + sum_of_factorial(n - 3)

…

Midterm Review!

