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Abstract—This paper presents ARVADA, an algorithm for
learning context-free grammars from a set of positive examples
and a Boolean-valued oracle. ARVADA learns a context-free
grammar by building parse trees from the positive examples.
Starting from initially flat trees, ARVADA builds structure to these
trees with a key operation: it bubbles sequences of sibling nodes
in the trees into a new node, adding a layer of indirection to the
tree. Bubbling operations enable recursive generalization in the
learned grammar. We evaluate ARVADA against GLADE and find
it achieves on average increases of 4.98× in recall and 3.13× in F1
score, while incurring only a 1.27× slowdown and requiring only
0.87× as many calls to the oracle. ARVADA has a particularly
marked improvement over GLADE on grammars with highly
recursive structure, like those of programming languages.

I. INTRODUCTION

Learning a high-level language description from a set of
examples in that language is a long-studied and difficult
problem. While early interest in this problem was motivated
by the desire to automatically learn human languages from
examples, more recently the problem has been of interest in
the context of learning program input languages. Learning a
language of program inputs has several relevant applications,
including generation of randomized test inputs [1], [2], [3], as
well as providing a high-level specification of inputs, which
can aid both comprehension and debugging.

In this paper we focus on the problem of learning context-
free grammars (CFGs) from a set of positive examples S
and a Boolean-value oracle O. This is a similar setting as
GLADE [4]. Like GLADE, and unlike other recent related
works [5], [6], [7], we assume the oracle is black-box: our
technique can only see the Boolean return value of the oracle.
We adopted the use of an oracle as we believe that in practice,
an oracle—e.g. in the form of a parser—is easier to obtain than
good, information-carrying negative examples.

In this paper, we describe a novel algorithm, ARVADA,
for learning CFGs from example strings S and an oracle
O. At a high-level, ARVADA attempts to create the smallest
CFG possible that accommodates all the examples. It uses
two key operations—bubbling and merging—to generalize the
language as much as possible, while not overgeneralizing
beyond the language accepted by O.

To create this context-free grammar, ARVADA repeatedly
performs the bubbling and merging operations on tree repre-
sentations of the input examples. This set of trees is initialized
with one “flat” tree per input example, i.e. the tree with a single
root node whose children are the characters of the input string.
The bubbling operation takes sequences of sibling nodes in the

*Equal contribution.

trees and adds a layer of indirection by replacing the sequence
with a new node. This new node has the bubbled sequence of
sibling nodes as children.

Then ARVADA decides whether to accept or reject the
proposed bubble by checking whether a relabeling of the new
node enables sound generalization of the learned language.
Essentially, labels of non-leaf nodes correspond to nontermi-
nals in the learned grammar. Merging the labels of two distinct
nodes in the trees adds new strings to the grammar’s language:
the strings derivable from subtrees with the same label can be
swapped. We call this the merge operation since it merges the
labels of two nodes in the tree. If a valid merge occurs, the
structure introduced by the bubble is preserved. Thus, merges
introduce recursion when a parent node is merged with one
of its descendants. If the label of the new node added in the
bubbling operation cannot merge with any existing node in the
trees, the bubble is rejected. That is, the introduced indirection
node is removed, and the bubbled sequence of sibling nodes
is restored to its original parent. These operations are repeated
until no remaining bubbled sequence enables a valid merge.

In this paper, we formalize this algorithm in ARVADA.
We introduce heuristics in the ordering of bubble sequences
minimize the number of bubbles ARVADA must check be-
fore find a successful relabeling. We implement ARVADA in
2.2k LoC in Python, and make it available as open-source.
We compare ARVADA to GLADE [4], a state-of-the-art for
grammar learning engine with blackbox oracles. We evaluate
it on parsers for several grammars taken from the evaluation of
GLADE, Reinam [5], Mimid [7], as well as a few new highly-
recursive grammars. On average across these benchmarks,
ARVADA achieves 4.98× higher recall and 3.13× higher
F1 score over GLADE. ARVADA incurs on a slowdown of
1.27× over GLADE, while requiring 0.87× as many oracle
calls. We believe this slowdown is reasonable, especially
given the difference in implementation language—ARVADA
is implemented in Python, while GLADE is implemented in
Java. Our contributions are as follows:
• We introduce ARVADA, which learns grammars from in-

puts strings and oracle via bubble-and-merge operations.
• We distribute ARVADA’s implementation as open source:

https://github.com/neil-kulkarni/arvada.
• We evaluate ARVADA on a variety of benchmarks against

the state-of-the-art method GLADE.

II. MOTIVATING EXAMPLE

ARVADA takes as input a set of example strings S and an
oracle O. The oracle returns True if its input string is valid
and False otherwise. ARVADA’s goal is to learn a grammar

https://github.com/neil-kulkarni/arvada


Gw
start→ stmt
stmt→ while boolexpr do stmt

| if boolexpr then stmt else stmt
| L = numexpr
| stmt ; stmt

boolexpr→ ∼boolexpr | boolexpr & boolexpr
| numexpr == numexpr | false | true

numexpr→ ( numexpr + numexpr ) | L | n

S = {“while true & false do L = n”,
“L = n ; L = (n+n)”}

O(i) =

{
True if i ∈ L(Gw)
False otherwise

Fig. 1: Example inputs S, and oracle O which returns true
if its input is in the language of the while grammar Gw.

G which maximally generalizes the example strings S in a
manner consistent with the oracle O. That is, strings i ∈ L(G)
in the language of the learned grammar should with high
probability be accepted by the oracle: O(i) = True. We
formally describe maximal generalization in Section III.

Fundamentally, ARVADA learns a grammar by learning
“parse trees” for the examples in S. These parse trees are
initialized with flat trees for each example in S. Then, AR-
VADA adds structure, turning sequences of sibling nodes into
new subtrees. The particular subtrees ARVADA keeps are those
which enable generalization in the induced grammar.

From any set of trees T we can derive an induced grammar.
In particular, each non-leaf node in a tree t ∈ T with label
tparent and children with labels tchild1 , tchild2 , . . . , tchildn induces
the rule tparent → tchild1tchild2 · · · tchildn . The induced grammar
of T is then the set of induced rules for all nodes in the trees.

For example, the trees in Fig. 2 induce the grammar:
t0 → w h i l e t r u e & f a l s e d o L = n

t0 → L = n ; L = ( n + n )

and the trees under (4) in Fig. 4 induce the grammar in Fig. 5.
Because of this mapping from trees to grammars, we will

use the term “nonterminal” interchangeably with “label of a
non-leaf node” when discussing relabeling trees.

A. Walkthrough

We illustrate ARVADA on a concrete example. We take the
set of examples S and oracle O shown in Fig. 1. This oracle O
accepts inputs as valid only if they are in the language of the
while grammar Gw, shown at the top of the figure. ARVADA
treats O as blackbox, that is, it has no structural knowledge
of Gw: Gw is shown only to clarify the behavior of O.

ARVADA begins by constructing naı̈ve, flat, parse trees from
the examples. These are shown in Fig. 2. Essentially, these
trees simply go from the start nonterminal t0 to the sequence
of characters in each example s ∈ S. Let T designate the set
of trees ARVADA maintains at any point in its algorithm.

1) Bubbling: The fundamental operation ARVADA per-
forms is to bubble up a sequence of sibling nodes in the current
trees T into a new nonterminal. To bubble a sequence s1 in the
trees T , we create a new nonterminal node ts1 with children

t0

w h i l e t r u e & f a l s e d o L = n

t0

L = n ; L = ( n + n )

Fig. 2: Initial set of parse trees T created by ARVADA when
run on S, O in Fig. 1. Each terminal c has a nonterminal
parent tc with rule tc → c, omitted for simplicity.

Bubble t1 → h i l e 7
t0

w t1

h i l e

t r u e & f a l s e d o L = n

Bubble t2 → ( n + n ) 3
t0

L = n ; L = t2

( n + n )

Fig. 3: Two possible bubbles applied to the trees in Fig. 2.

s1. Then we replace all occurrences of s1 in each t ∈ T with
ts1 . Fig. 3 shows two such bubbles applied to the trees in
Fig. 2. On top, we have bubbled the sequence hile into t1;
the second tree, unchanged, is not illustrated. On the bottom,
we have bubbled (n+n) into t2; the first tree is unchanged.

2) Merging: After bubbling a sequence s1, ARVADA either
accepts or rejects the bubble. ARVADA only accepts a bubble
if it enables valid generalization of the examples. That is, if a
relabeling of the bubbled nonterminal—merging its label with
the label of another existing node—expands the language ac-
cepted by the induced grammar, while maintaining the oracle-
validity of the strings produced by the induced grammar.

Consider again Fig. 3. On top, we have the bubble t1 →
hile. There is no terminal or nonterminal whose label can be
merged with the label t1 and retain a valid grammar: it can’t
be merged with t0, since “hile” on its own is not accepted
by O. Nor can it be merged with the label of any individual
character: as just one example, merging with L would cause
the O-invalid generalization “hile = n ; hile = (n+n)”.

On the bottom of Fig 3, we have the bubble t2 → (n+n).
We can in fact merge the label t2 with the label tn, the implicit
nonterminal expanding to n. Notice that if we replace n with
the strings derivable from t2, we get examples like while true
& false do L = (n+n) and L = (n+n) ; L = ((n+n)+(n+n)),
which are all valid. Conversely, if we replace occurrences
of t2 with n, we get examples like L = n ; L = n. We
accept this bubble, which expands the language accepted by



t0

w h i l e t r u e & f a l s e d o L = n

t0

L = n ; L = ( n + n )

|
(1) Bubble t2 → (n+n); merge (t2, n) into t3

↓
t0

w h i l e t r u e & f a l s e d o L = t3

n

t0

L = t3

n

; L = t3

( t3

n

+ t3

n

)

|
(2) Bubble t4 → L = t3; merge (t4, t0) into t0

↓
t0

w h i l e t r u e & f a l s e d o t0

L = t3

n

t0

t0

L = t3

n

; t0

L = t3

( t3

n

+ t3

n

)

|
(3) 2-Bubble (t5 → false, t6 → true); merge both into t7

↓
t0

w h i l e t7

t r u e

& t7

f a l s e

d o t0

L = t3

n

t0

t0

L = t3

n

; t0

L = t3

( t3

n

+ t3

n

)

|
(4) Bubble t8 → t7 & t7; merge (t8, t7) into t9

↓
t0

w h i l e t9

t9

t r u e

& t9

f a l s e

d o t0

L = t3

n

t0

t0

L = t3

n

; t0

L = t3

( t3

n

+ t3

n

)

Fig. 4: The state of trees T and the accepted bubbles of a full
run of ARVADA on S, O in Fig. 1.

the induced grammar. Thus, t2 and n are merged and relabeled
as t3. The trees after the relabel are shown after (1) in Fig. 4.
Note this merge has introduced recursive generalization; the
induced grammar now includes the rules:

t0 → L = t3 t0 → L = t3 ; L = t3 t3 → (t3+t3) t3 → n

In practice, ARVADA checks whether labels ta, tb can be
merged by checking candidate strings against the oracle. If the
oracle accepts all these candidate strings, the relabeling is valid
and the labels are merged. To create these candidates, ARVADA
creates mutated trees from the trees in T where (1) subtrees
rooted at ta are replaced subtrees rooted at tb, and (2) subtrees
rooted at tb are replaced subtrees rooted at ta. The candidate
strings are then the ones derived from these trees, i.e. the
ordered sequence of a tree’s leaf nodes. Section III-C describes
the conditions under which a bubble is accepted in more detail.
Section III-D describes how to create these candidate strings,
and the soundness issues this introduces.

3) Double bubbling: After accepting a bubble, ARVADA
continues to try and create new bubbles. It bubbles different

t0 → while t9 do t0 | L = t3 | t0 ; t0

t9 → t9 & t9 | true | false
t3 → ( t3 + t3) | n

Fig. 5: Grammar produced by the run of ARVADA in Fig. 4.

sequences of children in the current trees T , checking if they
are accepted, and updating T accordingly. Fig. 4 shows a
potential run of ARVADA, with the state of the trees T as
they are updated by bubbles and label merging.

In Fig. 4, after (1) accepting the bubble t2 → (n+n),
ARVADA (2) finds and accepts the bubble t4 → L = t3, whose
label can be merged with the start nonterminal t0. At this point,
ARVADA will find no more bubbles which can be merged with
any existing nodes in T . For example, if ARVADA creates the
bubble t5 → true, it will find that the label t5 cannot be
merged with the label of any existing node and reject it.

To cope with this, ARVADA also considers 2-bubbles. In
a 2-bubble, two distinct sequences of children—say, s1 and
s2—in the trees are bubbled at the same time, i.e. replacing
both s1 with ts1 → s1 and some other s2 with ts2 → s2. The
two sequences can be totally distinct, or sub/super sets, but not
overlapping: (s1 = true, s2 = false) is ok, as is (s1 = true,
s2 = true & false), but (s1 =rue & f, s2 =e & fal) is not.
ARVADA accepts a 2-bubble only if the labels ts1 and ts2 can
be merged with each other, not with another existing node.
Otherwise, either ts1 or ts2 could be accepted as a 1-bubble.

4) Termination: In the run in Fig. 4, (3) ARVADA applies
and accepts the 2-bubble (s1 = true, s2 = false) and merges
these sequences into t7. This 2-bubble enables one final single
bubble to be applied and accepted: (4) t8 → t7 & t7 can be
merged with t7. After this, no more 1-bubbles or 2-bubbles can
be accepted, so ARVADA simply outputs the grammar induced
by the final set of trees T . Fig. 5 shows the grammar.

5) Effect of bubbling order: First, note that multiple order-
ings of bubbles can result in an equivalent grammar. For exam-
ple, we could have applied (s1 = true, s2 = true & false)
in (3), then bubbled up false alone in (4). Second, while
Fig. 4 shows an ideal run, some accepted bubbles may impede
further generalization of the grammar. For example, in the
initial flat parse trees, t1 → e & false can be merged with e.
In the presence of the additional example “while n == n do
skip”, this merge prevents maximal generalization.

As such, the order in which bubbles are applied and
checked has a large impact on ARVADA’s performance. In
Section III-B, we describe heuristics that order the bubbles for
exploration based on the context and frequency of the bubbled
subsequence. These heuristics increase ARVADA’s probability
of successfully finding the maximal generalization of S with
respect to O, as discussed in Section IV-B.

6) Maximality of learned grammar: The grammar in Fig. 5
is not identical to that in Fig. 1. However, it contains all
the rules in Gw demonstrated by the examples S: t3 has
taken on the role of numexpr, t9 in the role of boolexpr,
and t0 is effectively stmt. However, the rule boolexpr →



numexpr == numexpr does not appear in Fig. 5. Fundamen-
tally, this is because no substring derivable from this rule exists
in S; as such, it is not part of S’s maximal generalization.

III. TECHNIQUE

We formally describe the high-level ARVADA algorithm in
Section III-A; Sections III-B, III-C, III-D, and III-E delve into
the heuristic decisions made in ARVADA’s implementation.

First, we formalize our problem statement. ARVADA accepts
as input a set of example strings S and a Boolean-valued oracle
O which judges the validity of the strings. ARVADA’s goal is to
learn a context-free grammar G which maximally generalizes
the set of example S in a manner consistent with O.

Maximal generalization: Let S be a set of input strings
and O be a Boolean-valued oracle accepting strings as in-
put. Assume each s ∈ S is accepted by the oracle, i.e.,
∀s ∈ S : O(s) = True. Let GO be a context-free grammar
such that its language of strings L(GO) is equal to {i ∈
Σ∗ | O(i) = True}, the set of strings accepted by the oracle
O. Since O(s) = True for each s ∈ S, then each s ∈ L(GO).
We call GO as the target grammar.

Thus, for each s, there exists a derivation Ds from the start
symbol T0 to s, i.e. Ds = T0 → α1α2 · · ·αn → · · · → s. This
derivation is a sequence of nonterminal expansions according
to some rules GO. Let Rs be the set of rules in GO used in the
derivation Ds. Let RS = ∪s∈SRs, and GSO be the subset of
GO which contains only those rules r ∈ RS . Intuitively, GSO
is the sub-grammar of GO which is exercised by the s ∈ S.

Finally: a grammar which maximally generalizes S w.r.t.
O is a grammar G such that L(G) = L(GSO), i.e. it accepts the
same language as GSO.

A. Main Algorithm

Algorithm 1 shows the main ARVADA algorithm. It works as
follows. First, ARVADA builds naı̈ve, flat, parse trees from the
input strings (Line 1). Considering each si ∈ S as a sequence
of characters si = c1i c

2
i · · · c

ni
i , the tree constructed for si has

a root node with the start symbol label t0 and ni children with
labels tc1i , tc2i , . . . , tcni

i
. Each tc has a single child whose label

is the corresponding character c. Fig. 2 shows these flat parse
trees for the examples strings s ∈ S in Fig. 1, although the
tc → c are not illustrated for simplicity.

ARVADA tries to generalize these parse trees by merging
nodes in the tree into new nonterminal labels (Line 2). To
merge two nodes ta, tb in a tree, we replace all occurrences
of the labels ta, tb with a new label tc. This creates new trees
T ′; the merge is valid if the language of the induced grammar
of T ′ only includes strings accepted by the oracle O.

In practice, we check if a merge of ta, tb is valid by
checking whether ta can replace tb in the example strings, and
vice-versa. The strings derivable from an arbitrary nonterminal
N in T are the concatenated leaves of the subtree rooted at
N . We check whether ta replaces tb by checking whether the
strings produced by replacing strings derivable from ta by
strings derivable from tb, are accepted by the oracle. That is,
we take the strings derivable from the trees T , with holes in

Algorithm 1 ARVADA’s high-level algorithm
Input: a set of examples S, an language oracle O.
Output: a grammar G fitting the language.

1: bestTrees← NAIVEPARSETREES(S)
2: bestTrees← MERGEALLVALID(bestTrees, O)
3: updated← True
4: while updated do
5: updated← False
6: allBubbles← GETBUBBLES(bestTrees)
7: for bubble in allBubbles do
8: bbldTrees← APPLY(bestTrees, bubble)
9: accepted,mergedTs← CHECKBUBBLE(bbldTrees,O)

10: if accepted then
11: bestTrees← mergedTs
12: updated← True
13: break
14: G ← INDUCEDGRAMMAR(bestTrees)
15: return G

place of strings derived from tb. Then we fill the holes with
strings derivable by ta. If all the strings are accepted by O,
ARVADA judges the replacement as valid. Section III-D details
this check and its soundness.

Now the main ARVADA loop starts. From the current S-
derived trees T , ARVADA gets all potential “bubbles” for
the trees (Algorithm 1, Line 6). For each tree t ∈ T ,
GETBUBBLES collects all proper contiguous subsequences of
children in t. That is, if the tree contains a node ti with
children C = c1, c2, . . . , cn, the potential bubbles include
all subsequences of C of length greater than one and less
than n. GETBUBBLES returns all these subsequences as 1-
bubbles, and all non-conflicting pairs of these subsequences
as 2-bubbles. Two subsequences are non-conflicting if they
do not strictly overlap: they can be disjoint or one can be a
proper subsequence of the other. So ((c1, c2, c3), (c2, c3, c4))
conflict, but ((c1, c2, c3), (c2, c3)) and ((c1, c2, c3), (c4, c5)) do
not. The order in which ARVADA explores these bubbles is im-
portant for efficiency; we discuss this further in Section III-B.

Then, for each potential bubble, ARVADA tries applying it
to the existing set of trees T . Suppose we have a 1-bubble
consisting of the subsequence ci, ci+1, . . . , cj . To apply this
bubble, we replace any sequence of siblings tci , tci+1

, . . . , tcj
with labels ci, ci+1, . . . , cj in the tree with a new subtree
tnew → tci , tci+1 , . . . , tcj . Fig. 3 shows two such bubblings:
hile is bubbled into the nonterminal t1 at the top, and (n+n)
is bubbled to t2 on the bottom. If the bubbled nodes have
structure under them, that structure is maintained: e.g., the
bubbling of t7 & t7 into t9 at (4) in Fig. 4. For a 2-bubble, the
same process is repeated for the two subsequences involved.

After applying the bubble, ARVADA checks whether it
should be accepted (Line 9). Section III-C formalizes CHECK-
BUBBLE, but essentially, CHECKBUBBLE accepts a bubble
if the new nonterminals introduced in its application can be
validly merged with some other nonterminal node in the tree.



t0

w h i l e n = = n d o t0

s k i p

Tree 1

t0

w h i l e t1

t r u e

d o t0

s k i p

Tree 2

t0

i f t1

f a l s e

t h e n t0

s k i p

e l s e t0

s k i p

Tree 3

Fig. 6: Partial parse tree T during run of ARVADA on while, with guide examples “while n==n do skip”, “if false then
skip else skip” and “while true do skip”. ARVADA has applied the 1-bubble “skip”, which merged with t0, and the
2-bubble (“false”, “true”). The 4-contexts for “n == n”’ are highlighted in yellow, and for t1 are highlighted in green.

If the new bubbled nonterminal allows a valid merge with
some other nonterminal, CHECKBUBBLE returns True as well
as the trees with the merge applied (Line 9). We update the
best trees T to reflect the successful merge (Line 11), and
GETBUBBLES is called again on the new T . If the bubble
is not accepted, ARVADA continues to check the next bubble
returned by GETBUBBLES (Line 7).

The algorithm terminates when none of the bubbles are
accepted, i.e. when the trees T cannot be further generalized,
and returns the grammar G induced by the trees T (Line 15).

We can guarantee the following about ARVADA as long as
merges are sound, once we consider the notion of partially
merging two nonterminals, discussed in Section III-C2.

EXISTENCE THEOREM: There exists a sequence of k-
bubbles, that, when considered by ARVADA in order, enable
ARVADA to return a grammar G s.t. L(G) = L(GO), so long
as the input examples S are exercise all rules of G.

Proof Outline: The optimal bubble order always chooses
the right-hand-side of some N → α1 · · ·αn in G as the
sequence to bubble, either as 1-bubble if there exists an ex-
pansion for N in the trees already, or as a 2-bubble otherwise.

Our technical report gives a formal treatment of this and the
Generalization Theorem, which shows that k-bubbles mono-
tonically increase the language of the learned grammar [8].

B. Ordering Bubbles for Exploration

As described in paragraph 5) of Section II and alluded to
above, the order of bubbles impacts the eventual grammar
returned by ARVADA. Unfortunately, the number of orderings
of bubbles is exponential. To have an efficient algorithm in
practice, we must make sure the algorithm finds the correct
order of bubbles early in its exploration of bubble orders. As
such, GETBUBBLES returns bubbles in an order more likely
to enable sound generalization of the grammar being learned.

As described in the prior section, bubble sequences consist
of proper contiguous subsequences of children in the current
trees T . We increase the maximum length of subsequences
considered once all bubbles of shorter length do not enable any
valid merges. These subsequences (and their pairs) form the
base of 1-bubbles (and 2-bubbles) returned by GETBUBBLES.

Recall that a bubble should be accepted if the bubbled
nonterminal(s) can be merged with an existing nontermi-
nal (or each other). Thus, GETBUBBLES should first return
those bubbles that are likely to be mergeable. We leverage
the following observation to return bubbles likely to enable
merges. Expansions of a given nonterminal often occur in

a similar context. The k-context of a sequence of sibling
terminals/nonterminals s in a tree is the tuple of k siblings
to the left of s and k siblings to right of s.

Fig. 6 shows an example of a run of ARVADA
on the while language, after the application of the
1-bubble “skip” and the 2-bubble (“false”, “true”).
The set of 4-contexts for the sequence “n == n” is
{((i, l, e, ), ( , d, o, ))}. Similarly, “t1”’s 4-contexts are
{((S, i, f, ), ( , t, h, e)), ((i, l, e, ), ( , d, o, ))}; “S” is
a dummy element indicating the start of the example
string. Note that “n==n” and “t1” share the 4-context
{((i, l, e, ), ( , d, o, ))}

With this in mind, GETBUBBLES orders the bubbles in
terms of their context similarity. Given two contexts c0 =
(l0, r0) and c1 = (l1, r1), where li = (lki , l

k−1
i , . . . , l0i )

and ri = (r0i , . . . , r
k−1
i , rki ), we have contextSim(c0, c1) =

kTupleSim(l0, l1) + kTupleSim(r0, r1), where

kTupleSim(t0, t1) =

{
1
2 if t0 = t1∑k

i=0
1=(ti0,t

i
1)

2i+2

where 1= is the indicator function, returning 1 if its arguments
are equal and 0 otherwise. This similarity function gives most
weight to the context elements closest to the bubble.

With this in mind, we define set context similarity as the
maximum similarity of two contexts within the set:

setContextSim(C0, C1) = max
c0∈C0,c1∈C1

contextSim(c0, c1).

In our running example, the context similarity is 1 because
n==n’s 4-context set is a subset of t1’s 4-context set.

To form bubbles, GETBUBBLES first traverses all the trees
T currently maintained by ARVADA. It considers each proper
contiguous subsequence of siblings in the trees. For each
subsequence s, it collects the k-contexts for s, as well as
the occurrence count of the subsequence occ(s). In Fig. 6,
occ(while) = 2, occ(t1) = 2 and occ(n == n) = 1. In our
implementation we take k = 4.

ARVADA then creates a 2-bubble for each pair of sequences
(s1, s2) where both |s1| > 1 and |s2| > 1. The similarity score
of this 2-bubble is setContextSim(contexts(s1), contexts(s2))
and its frequency score is the average frequency of the two
sequences in the bubble occ(s1)+occ(s2)

2 . Additionally, for each
sequence s0 with |s0| > 1, ARVADA creates a 1-bubble (s0).
Let S1 be the set of length-one subsequences. The simi-
larity score of (s0) is maxs1∈S1

setContextSim(contexts(s0),
contexts(s1)) and its frequency score is occ(s0).
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Fig. 7: Example tree and rules in its induced grammar which
have tn in their expansion (1), and the same grammar with tn
split at different positions. For simplicity, nonterminals of the
form tc → c—other than tn in (1)—are collapsed to c.

Finally, GETBUBBLES takes the top-n bubbles as sorted
primarily by similarity, and secondarily by frequency. Intu-
itively, high-frequency sequences may correspond to tokens
in the oracle’s language. The order of bubbles is shuffled to
prevent all runs of ARVADA from getting struck in the same
manner. We find n = 100 to be effective in practice.

C. Accepting Bubbles

The second key component of ARVADA is deciding whether
a given bubble should be accepted: this section formalizes
how CHECKBUBBLE works. At the core of CHECKBUBBLE
is the concept of whether two labels ta, tb can be merged. We
say that ta and tb can be merged, i.e. MERGES(ta, tb), if and
only if REPLACES(ta, tb)—that is, all occurrences of tb can
be replaced by ta in the grammar—and REPLACES(tb, ta). We
formalize how REPLACES is checked in the next section.

1) 2-Bubbles: ARVADA accepts a 2-bubble (s1, s2) with
labels ts1 , ts2 only if MERGES(ts1 , ts2). Intuitively, this is
because both bubbles should be kept only if they together
expand the grammar. For example, suppose we apply the 2-
bubble (“n == n”, “lse”) to the trees in Fig. 6, resulting in
nonterminals tn==n → n == n and tlse → lse. While tn==n

can merge with t1, tlse does not contribute to this merging.
So, (“n == n”) should be accepted only as a 1-bubble.

2) 1-Bubbles: Recall that ARVADA scores 1-bubbles highly
if they are likely to merge with an existing nonterminal. Let
NTs(T ) be the nonterminal labels present in the current set of
trees T . Given a 1-bubble (s1) with label ts1 , we go through
each ti ∈ NTs(T ) and check whether MERGES(ti, ts1).
If MERGES(ti, ts1) is true for some ti ∈ NTs(T ), then
CHECKBUBBLE accepts the bubble (s1).

However, if ts1 cannot merge with any ti ∈ NTs(T ),
ARVADA also looks for partial merges. Partial merging works
as follows. Let CNTs(T ) be the character nonterminal labels

present in the current set of trees T . A character nonterminal
is a nonterminal whose expansions only of a single terminal
element, e.g., tn → n or t1 → 1 | 2 | 3.

For each tc ∈ CNTs(T ), the partial merging algorithm
identifies all the different occurrences of tc in the right-hand-
side of expansions in T ’s induced grammar. For instance, in
the grammar fragment (1) of Fig. 7, we see the nonterminal
tn, corresponding to “n”, occurs 4 distinct times in right-
hand-sides of expansions. The partial merging algorithm then
modifies the grammar so that the ith occurrence of tc is
replaced with a fresh nonterminal tci . Each tci expands to
the same bodies as tc; i.e. tci → c. This replacement process
is illustrated in the grammar fragment (2) of Fig. 7: the
four occurrences of tn have been replaced with tn1

, tn2
, tn3

,
and tn4

. Finally, we get to the merging in partial merging:
for each tci , the algorithm checks if MERGES(tci , ts1). If
MERGES(tci , ts1) for any tci , ARVADA accepts the bubble
(s1), and ts1 is merged with all such tci . The tcj which cannot
be merged with ts1 are restored to the original nonterminal tc.

The term partial merge refers to the fact that we have
effectively merged ts1 with some of the occurrences of tc in
rule expansions. This step is useful when ARVADA’s initial
trees—which map each character to a single nonterminal—
use the same nonterminal for characters that are conceptually
separate. For instance, consider the 1-bubble ((n+n)), with
label t(n+n). Given the tree in Fig. 7, MERGES(tn, t(n+n))
fails because “(n+n)” cannot replace the “n” in “then”. In
fact, t(n+n) cannot merge with any ti ∈ NTs(T ) initially. But
the partial merge process splits tn into tn1

, tn2
, tn3

, tn4
, and

ARVADA finds that t(n+n) in fact merges with tn2 , tn3 and
tn4 . So, it is merged with those nonterminals and accepted.

Note: though we consider only partial merges on character
nonterminals for efficiency reasons, the concept of partial
merging can be applied to any pair of nonterminals.

In summary, a 1-bubble (s1) with label ts1 is accepted if
either: (1) for some ti ∈ NTs(T ), MERGES(ti, ts1), or (2) for
some tc ∈ CNTs(T ), ts1 can be partially merged with tc.

D. Sampling Strings for Replacement Checks

The final important element affecting the performance of
ARVADA is how exactly we determine whether the merge of
two nonterminals labels is valid. Recall that MERGES(ta, tb)
if and only if REPLACES(ta, tb) and REPLACES(tb, ta).

We implement REPLACES(treplacer, treplacee) as follows. From
the current parse trees, we derive the replacee strings: the
strings derivable from the parse trees in trees, but with holes
instead of the strings derived from treplacee. Then, we derive
a set of replacer strings: the strings derivable from treplacer
in the trees. Finally, we create the set of candidate strings
by replacing the holes in the replacee strings with the replacer
strings. If O rejects any candidate string, the merge is rejected,
and REPLACES returns false.

Fig. 8 shows how replacer and replacee strings are computed
in the call to REPLACES(t0, t4), i.e. whether t0 can replace t4.
Replacee strings for a node in the parse tree are computed by
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Fig. 8: Two partial parse trees and examples of replacee and
replacer strings. The symbol • designates holes which will be
replaced by (level-n derivable) replacer strings.

taking the product of replacee strings for all its children; the
nonterminal being replaced becomes a hole.

Level-0 replacer strings for ti are just the strings that
directly derivable from ti in the tree; in Fig. 8, the level-
0 derivable strings of t0 are 44+4, (3), 3, and the level-0
derivable strings of t4 are 44, 4. Then, the set of level-n
derivable strings for a node is the set derived from taking the
product of all level-(n− 1) derivable strings for each child of
a node. The level-1 replacer strings for t0 are shown in Fig. 8.

When REPLACES is run in the full MERGEALLVALID call
or while evaluating a 1-bubble, we use only level-0 replacer
strings. However, we found that level-1 replacer strings greatly
increased soundness at a low runtime cost for 2-bubbles.
Intuitively this is because nonterminals from new bubbles
tend to have less structure underneath them than existing
nonterminals in the trees. So it is faster to compute level-1
replacer strings for these new bubble-induced nonterminals.

Note that the both the number of replacee strings and
of level-n derivable replacer strings grows exponentially. So,
instead of taking the entire set of strings derivable in this
manner, if there are more than p of them, we uniformly sample
p of them. In our implementation we use p = 50, to make the
number of parse calls reasonable in terms of runtime.

Unfortunately, this process allows unsound merges, where
all candidate strings are accepted by the oracle, but the merge
adds oracle-invalid inputs to the language of the learned gram-
mar. First, because only p candidates are sampled. Second,
because the replacee strings are effectively “level 0”, and thus,
not reflective of the current induced grammar from the trees.
Third, because a candidate string is produced by replacing all
its holes with a single replacer string, rather than filling holes
with different replacer strings. Taking p → ∞, n → ∞ for
the level-n replacer strings, and filling different holes with
different replacer strings would ensure sound merges.

E. Pre-tokenization

Since ARVADA considers 2-bubbles, it is effectively n4 in
the total length of examples n. So, to improve performance as
n gets large and reduce the likelihood of creating “breaking”
bubbles, in our implementation we use a simple heuristic
to pre-tokenize the values at leaves, rather than considering

each character as a leaf. We group together sequences of
contiguous characters of the same class (lower-case, upper-
case, whitespace, digits) into leaf tokens. Punctuation and
non-ASCII characters are still treated as individual characters.
We then run the ARVADA as described previously. To ensure
generalization, we add a last stage which tries to expand these
tokens into the entire character class: e.g. if t1 → abc|cde, we
check whether t1 can be replaced by any sequence of lower-
case letters, letters, or alphanumeric characters. We construct
the replacee strings as described above, and sample 10 strings
from the expanded character classes as replacer strings.

IV. EVALUATION

We seek to answer the following research questions:
RQ1. Do ARVADA’s mined grammars generalize better (have

higher recall) than state-of-the-art?
RQ2. Do ARVADA’s mined grammars produce more valid

inputs (have higher precision) than state-of-the-art?
RQ3. How does the nondeterminism in ARVADA cause its

behavior to vary across different invocations?
RQ4. How does ARVADA’s performance compare to that of

deep-learning approaches?
RQ5. What are ARVADA’s major performance bottlenecks?
RQ6. What do ARVADA’s mined grammars look like?

A. Benchmarks

We evaluate ARVADA against state-of-the-art blackbox
grammar inference tool GLADE [4] on 11 benchmarks.

The first 8 benchmarks consist of an ANTLR4 [10] parser
for the ground-truth grammar as oracle and a randomly gener-
ated set of training examples S. S is sampled to cover all of the
rules in the ground-truth grammar, while keeping the length of
each example s ∈ S small. The test set is randomly sampled
from the ground-truth grammar. Essentially, this ensures that
the maximal generalization of S covers the entire test set.
Other than turtle and while, these benchmarks come from
prior work [4], [5], [7]:
• arith: operations between integers, can be parenthesized
• fol: a representation of first order logic, including quali-

fiers, functions, and predicates
• json: JSON with objects, lists, strings with alpha-numeric

characters, Booleans, null, integers, and floats
• lisp: generic s-expression language with “.” cons’ing
• mathexpr: binary operations and a set of function calls

on integers, floats, constants, and variables
• turtle: LOGO-like DSL for Python’s turtle
• while: simple while language as shown in Fig. 1
• xml: supporting arbitrary attributes, text, and a few labels
The next 3 benchmarks use as oracle a runnable program,

and use a random input generator to create S and the test set.
S consists of the first 25 oracle-valid inputs generated by the
generator, and the test set of the next 1000 oracle-valid inputs
generated. In this case, there is no guarantee that the maximal
generalization of S covers the test set.
• curl: the oracle is the curl[11] url parser. We use the

grammar in RFC 1738 [12] to generate S and test set.



ari
th fol jso

n lisp math tur
tle

while xm
l

cur
l

tin
yc

no
de

js
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(a) Recall. Higher is better.
ari

th fol jso
n lisp math tur

tle
while xm

l
cur

l
tin

yc
no

de
js

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(b) Precision. Higher is better.
ari

th fol jso
n lisp math tur

tle
while xm

l
cur

l
tin

yc
no

de
js

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(c) F1 Score. Higher is better.

Fig. 9: Recall, precision, and F1 score for each of the 10 runs of ARVADA (plotted with •) and GLADE (plotted with I).

TABLE I: Summary of results for ARVADA and GLADE. “R” is recall, “P” is precision.
Results for ARVADA are listed as the means over 10 runs with ± the standard deviation.
Bolded results are 2× better.

ARVADA GLADE

Bench. Recall Precision F1 Score Time(s) # Queries R P F1 Time(s) # Queries

arith 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 3 ± 0 828 ± 37 0.07 1.00 0.13 12 2.3K
fol 0.87 ± 0.25 1.00 ± 0.01 0.91 ± 0.18 372 ± 36 33K± 3.7K 0.06 1.00 0.11 107 20K
json 1.00 ± 0.00 0.95 ± 0.08 0.97 ± 0.05 76 ± 11 16K ± 1K 0.42 0.98 0.59 61 11K
lisp 0.52 ± 0.33 0.90 ± 0.17 0.57 ± 0.21 16 ± 4 3.6K ± 603 0.23 1.00 0.38 20 3.8K
math. 0.84 ± 0.12 0.97 ± 0.02 0.89 ± 0.08 65 ± 6 11K ± 1.1K 0.18 0.99 0.31 103 19K
turtle 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 84 ± 8 10K ± 1.1K 0.21 1.00 0.34 75 14K
while 0.70 ± 0.21 1.00 ± 0.00 0.81 ± 0.14 54 ± 5 13K ± 1.5K 0.01 1.00 0.02 50 9.1K
xml 0.96 ± 0.11 0.98 ± 0.07 0.96 ± 0.08 205 ± 34 14K ± 2.4K 0.26 1.00 0.42 81 15K

curl 0.92 ± 0.02 0.55 ± 0.14 0.68 ± 0.11 111 ± 12 25K ± 3.1K 0.80 0.76 0.78 112 30K
tinyc 0.92 ± 0.04 0.73 ± 0.13 0.81 ± 0.08 6.4K ± 1.2K 112K ± 32K 0.17 0.60 0.26 917 252K
nodejs 0.30 ± 0.21 0.42 ± 0.13 0.29 ± 0.16 46K ± 22K 142K ± 90K 0.26 0.50 0.34 38K 113K

TABLE II: Results for CLGen’s
core LSTM [9]. “Model Time” is
the logged model training time.

CLGen LSTM

Bench. Time(s) Model Time(s) Precision

arith 172 9 0.002
fol 177 12 0.460
json 178 11 0.625
lisp 173 9 0.367
mathexpr 176 12 0.393
turtle 176 10 0.367
while 167 9 0.012
xml 171 12 0.228

curl 176 12 0.434
tinyc 189 21 0.062
nodejs 176 18 0.111

• tinyc: the oracle is the parser for tinyc [13], a compiler
for a subset of C. We use the same golden grammar as
in Mimid [7] to generate S and the test set.

• nodejs: the oracle is an invocation of nodejs --check,
which just checks syntax [14]. To generate S and the test
set, we use Zest’s [15] javascript generator.

The average length of training examples in the set S is
below 20 for all benchmarks except tinyc (77) and nodejs
(58). We adjust the maximum bubble length hyperparameter
(ref. Section III-B) accordingly: the default is to range from
3 to 10, but on tinyc and nodejs we range from 6 to 20.

B. Accuracy Evaluation

First, we evaluate the accuracy of ARVADA and GLADE’s
mined grammars with respect to the ground-truth grammar We
ran both ARVADA and GLADE with the same oracle example
strings. Three key metrics are relevant here:

Recall: the proportion of inputs from the held-out test set—
generated by sampling the golden grammar/generator—that
are accepted by the mined grammar. We use a test set size
of 1000 for all benchmarks.

Precision: the proportion of inputs sampled from the mined
grammar that are accepted by the golden grammar/oracle. We
sample 1000 inputs from the mined grammar to evaluate this.

F1 Score: the harmonic mean of precision and recall. It is
trivial to achieve high recall but low precision (mined grammar
captures any string) or low recall but high precision (mined
grammar captures only the string in S); F1 measures the
tradeoff between the two.

Results. As ARVADA is nondeterministic in the order of
bubbles explored, we ran it 10 times per benchmark. As
GLADE is deterministic, we ran it only once per benchmark.

Table I shows the overall averaged results, Fig 9 the indi-
vidual runs. We see from the table that on average, ARVADA
achieves higher recall than GLADE on all benchmarks, and it
achieves higher F1 score on all but 2 benchmarks. ARVADA
achieves over 2× higher recall on 9 benchmarks, and over 2×
higher F1 score on 7 benchmarks.

Even for those benchmarks where ARVADA does not have
a higher F1 score on average, Fig. 9c shows that ARVADA
outperforms GLADE on some runs. For nodejs, on 5 runs,
ARVADA achieves a higher F1 score, ranging from 0.37 to
0.55. For curl, on 2 runs ARVADA achieves F1 scores greater
than or equal to GLADE’s: 0.78 and 0.86. It makes sense
that GLADE performs well for curl: the url language is
regular, and the first phase of GLADE’s algorithm works by
building up a regular expressions. Nonetheless Fig. 9a shows
that ARVADA achieves consistently higher recall on curl.

Overall, on average across all runs and benchmarks, AR-
VADA achieves 4.98× higher recall than GLADE, while
maintaining 0.96× its precision. So, on our benchmarks, the
answer to RQ1 is in the affirmative, while the answer to RQ2
is not. Given that ARVADA still achieves a 3.13× higher F1
score on average, and that higher generalization (in the form
of recall) is much more useful if the mined grammar is used
for fuzzing, we find this to be a very positive result.

However, we see from the standard deviations in Table I that
ARVADA’s performance varies widely on some benchmarks,



notable fol, lisp, while, and fol. Fig. 9, which shows
the raw data, confirms this. In Fig. 9a, we see that the
performance on the lisp benchmark is quite bimodal. All of
the mined grammars with recall around 0.25 fail to learn to
cons parenthesized s-expressions. This may be because the
minimal example set did not actually have an example of this
nesting. On nodejs, the two runs with recall less than 0.1
find barely any recursive structures, suggesting that on larger
example sets, ARVADA may get lost in bubble order. Overall,
the answer to RQ3 is that ARVADA’s nondeterministic bubble
ordering can have very large impacts on the results. We discuss
possible mitigations in Section V.

C. Comparison to Deep Learning Approaches

Recently there has been interest in using machine learning
to learn input structures. For instance, Learn&Fuzz trains a
seq-2-seq model to model the structure of PDF objects [16];
it uses information about the start and end of pdf objects as
well as the importance of different characters in its sampling
strategy. DeepSmith [17] trains an LSTM to model OpenCL
kernels for compiler fuzzing, adding additional tokenization
and pre-processing stages to CLGen [9].

A natural question is how ARVADA compares to these gen-
erative models. We trained the LSTM model from CLGen [9],
the generative model behind DeepSmith, on our benchmarks.
We removed all the OpenCL-specific preprocessing stages
from the pipeline. We used the parameters given as example
in the CLGen repo, creating a 2-layer LSTM with hidden
dimension 128, trained for 32 epochs. We used \n!!\n as
an EOF separator. Each sample consisted of 100 characters,
split into different inputs where the EOF separator appeared.

Table II shows the runtime of the model on each benchmark,
as well as the precision achieved on the first 1000 samples
taken from the model. Generally, we see that the precision
is much lower than that of GLADE or ARVADA. On arith,
the model over-trains on the EOF separator, adding \n and
! throughout samples. Since the model is generative—it can
generate samples but not provide a judgement of sample
validity—, we cannot measure Recall as in Table I. However,
qualitative analysis of the samples suggests there is not much
learned recursive generalization. For json, 602 of the 625
valid samples are a single string (e.g., "F"); the other 21 valid
samples are numbers, false, or []. For nodejs, of the 111
valid samples, 26 are empty, 24 are a single identifier (e.g.
a 0), 18 are a parenthesized integer or identifier (e.g,. (242)),
and 17 are a single-identifier throw, e.g. throw (a 0).

These results are not entirely unexpected, because the
LSTM underlying CLGen is learning solely from the input
examples. Both ARVADA and GLADE extensively leverage the
oracle, effectively creating new input examples from which
to learn. This explains why the runtimes look so different
between Tables I and II. We see in Table II that the total
time to setup and train the model is around 3 minutes for
all benchmarks, and the core training time is around 10-20
seconds. We see the model training time is slightly higher for
tinyc and nodejs, which had longer input examples.
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Fig. 10: Average percent of runtime spent in different compo-
nents of ARVADA. Error bars show std. deviation.

Overall, we expect these deep-learning approaches to be
more well-suited to a case where an oracle is not available,
but large amounts of sample inputs are. These models may also
be more reliant input-format specific pre-processing steps, like
those used on OpenCL kernels in CLGen and DeepSmith.

D. Performance Analysis

The next question is about ARVADA’s performance. Table I
shows the average ARVADA runtime and number of queries
performed for each benchmark, and the same statistics for
GLADE. On 7 of 11 benchmarks, ARVADA is on average
slower than GLADE; overall across benchmarks, this amounts
to an average 1.27× slowdown. This is quite respectable, since
ARVADA has a natural runtime disadvantage due to being
implemented in Python rather than Java. For the three bench-
marks on which ARVADA is over 2× slower than GLADE,
it has huge increases in F1 score: 0.11 → 0.91 for fol,
0.42→ 0.96 for xml, and 0.26→ 0.81 for tinyc.

The story for oracle queries performed is inversed; ARVADA
requires more oracle queries on average on only 4 benchmarks.
For all of these except nodejs, ARVADA also had much
higher F1 scores. However, nodejs is a benchmark with high
variance. On the run with highest F1 score (0.55, higher than
GLADE’s 0.34), ARVADA takes 86,051 s to run and makes
270k oracle calls. On the fastest run, where ARVADA only
gets F1 score 0.14, ARVADA takes 17,775 s and makes 41k
oracle calls. That is, the higher performance cost correlates
with the slower runs on this benchmark: 5 of the 6 slower
runs also have higher F1 scores.

Overall across all benchmarks, ARVADA performs only
0.87× as many oracle queries as GLADE. This is encour-
aging as it gives more room for performance optimizations.

Fig. 10 breaks down the average percent of runtime spent
in ARVADA’s 3 most costly components: calling the oracle;
creating, scoring, and ordering bubbles; and sampling string
for replacement checks. The error bars show standard de-
viation; note the aforementioned high variance for nodejs
appears here too. On the minutes-long benchmarks on which
ARVADA is at least 10 seconds slower than GLADE, > 20%
of the runtime is spent in sampling strings for replacement.
The current implementation of this re-traverses the trees T
after each bubble to create these examples.



while→ stmt while | skip | L =

stmt→ while bool and-space do | while ;

| if bool and-space then while else

bool→ false | ˜ bool | true | num == num
and-space→ | and-space & bool and

num→ L | n | ( num + num )

Fig. 11: ARVADA-mined while grammar with 100% recall.
Nonterminals renamed for readability.

json→ str | dict } | false | true | [ ] | pos-int
| float-start DIGITS | float-start pos-int | int
| { } | [ json list-end | null | NAT

str→ str-start ’’
dict→ dict-lst str : json dict-lst→ dict , | {

pos-int→ NAT int→ - pos-int | NAT

float-start→ int . | pos-int .
list-end→ , json list-end | ]
str-start→ ‘‘ chars | ‘‘ pos-int | str-start pos-int

chars→ chars chars | pos-int chars | ALNUMS

DIGITS : [0-9]+ NAT : 0|[1-9][0-9]* ALNUMS : [a-Z0-9]+

Fig. 12: ARVADA-mined json grammar with maximum F1
Score. Nonterminals renamed for readability. DIGITS, NAT,
and ALNUMS are tokens expanded after the Sec. III-E pass.

On the particularly slow benchmarks, tinyc and nodejs,
ARVADA spends a long time ordering bubbles. This makes
sense because of the larger example length of the benchmarks.
It is nonetheless encouraging to see this room for improve-
ment, as GETBUBBLES re-scores the full set of bubbles each
time a bubble is accepted. It should be possible to bring down
runtime by only scoring the bubbles that are modified by the
application of the just-accepted bubble. On nodejs, ARVADA
also spends a long time in oracle queries, because the time for
each query is much longer (300 ms vs. 3ms for tinyc).

Overall, ARVADA has runtime and number of oracle queries
comparable with GLADE, while achieving much higher recall
and F1 score. As for RQ3, when the length of the examples in
S is small, oracle calls dominate runtime. As example length
grows, the ordering and scoring of bubbles—particularly com-
puting context similarity—starts to dominate runtime.

E. Qualitative Analysis of Mined Grammars

The statistics discussed in the prior section show that
ARVADA’s mined grammars can closely match the ground-
truth grammars in terms of inputs generated and accepted.
For RQ5, we consider their human-readable complexity.

Mined grammar readability varies across benchmarks. For
instance, on the 3 runs where ARVADA achieves 100% recall
for while, the mined grammars look similar to Gw Fig. 1:
Fig. 11 shows the grammar mined in one of these runs,
randomly selected from the three. Fig. 12 shows the grammar
with maximum F1 score mined by ARVADA on json; it splits

some expansions at unusual places (e.g. the use of float-start)
but is readable after some examination.

For tinyc, the mined grammars are somewhat over-
bubbled: on average they have 56 nonterminals, and 217 rules
of average length 1.8. On nodejs, the grammars have on
average 40 nonterminals and 276 rules of average length 3.6.
Because GLADE’s grammars are not meant to be human-
readable, they are significantly larger: 3505 nonterminals with
4417 rules of average length 1.3 for tinyc; and 2060 nonter-
minals with 3939 rules of average length 1.2 for nodejs.

V. DISCUSSION AND THREATS TO VALIDITY

Our implementation of ARVADA relies on some heuristic
elements, which we developed while examining some smaller
benchmarks (i.e. arith, while) on a particular set of example
strings. To prevent overfitting on these benchmarks, for eval-
uation, we used a freshly-generated set of example strings.

The definition of maximal generalization assumes that the
language accepted by the oracle is context-free. Thus, we
have no formal guarantees on how the algorithm will react to
context-sensitive input languages. While our results compared
to GLADE are promising, there is no guarantee they will
generalize to all benchmarks.

The fact that ARVADA’s maximum results consistently beat
state-of-the-art (Fig. 9) suggests a few directions for im-
provement. If runtime is not a constraint, ARVADA can be
parallelized as-is. To choose the winner, first measure precision
with respect to the oracle. Then, evaluate the grammars on
inputs sampled from the other mined grammars, and choose
the one which captures the most of those samples. A less-
wasteful way to parallelize would be to conduct some sort
of beam search, perhaps using the just-described comparative
generalization metric, or to backtrack bad bubbles.

There remains much room to optimize the order in which
bubbles are explored, and pre-tokenization of inputs. We chose
two natural metrics for ordering (context similarity and fre-
quency), but have not exhaustively examined how to combine
them. From the difference in performance between the larger
benchmarks tinyc (which had simple regex structure) and
nodejs (regexes in the training set are more complex), it
appears that ARVADA could benefit from running at a higher
token level. Developing better heuristics for tokenization, or
pairing ARVADA with a more complex regex learning algo-
rithm than that described in Section III-E may yield benefits.

VI. RELATED WORK

Automatically synthesizing context-free grammars from
examples is a long-studied problem in computer science;
Lee [18], and Stevenson and Cordy [19] give a survey of
some techniques. Gold’s theorem [20] states that grammars
cannot be learned efficiently from a set of positive examples
alone. Angluin and Kharitonov [21] show that pure black-box
approaches face scalability issues on arbitrary CFGs. But, real-
world grammars may not be so adversarial. Our heuristics use
statistical information to heavily prune the search space.



The core idea in Solomonoff’s [22] algorithm is to, for
each example, find substrings of the example that can be
deleted. If a substring can be deleted, Solomonoff proposes to
add a recursive repetition rule for the substring. Rather than
trying to generalize each example string individually, ARVADA
considers all example strings together when producing candi-
date strings. Unlike Arvada, Knobe and Knobe [23] assume a
teacher that can provide new valid strings if the current pro-
posed grammar does not match the target grammar. For each
new valid string, their algorithm adds the most general valid
production of the form S → B1B2 · · ·Bn to the grammar,
where Bi are terminals or existing nonterminal. It adds new
nonterminals by merging nonterminal sequences which have
the same left and right contexts in expansions. GLADE [4]
learns context-free grammars in two phases. First, it learns
a regular expression generalizing each input example. Then,
it tries to merge subexpressions of these regular expressions
in a manner similar to our label merging. REINAM [5] uses
reinforcement learning to refine a learned CFG, allowing fuzzy
matching through a PCFG. It is complementary to our work,
as the module that learns a CFG (in their evaluation, GLADE),
could be replaced by ARVADA.
L∗ and RPNI are two classic algorithms for the learning of

regular languages. L∗ [24] learns regular languages with the
stronger assumption of a minimally adequate teacher, which
can both (1) act as an oracle for the target language , and (2)
given a learned regular language, assert whether it is identical
to the target language or give a counterexample. RPNI [25]
learns regular languages in polynomial time, assuming a set
of positive and negative examples. GLADE was found to
outperform both these algorithms for program input grammars.
The original L∗ paper also describes Lcf , an algorithm for
learning context-free languages in polynomial time, assuming
that the set of terminals and non-terminals is known ahead of
time. This assumption is not reasonable in most contexts.

Closely related is the field of distributional learning. Clark
et. al [26], [27] present polynomial algorithms for learning
binary context feature grammars—which capture context-free
languages in addition to more complex languages—from
strings. The algorithms rely on the representation of words
by their contexts, an interesting relation to ARVADA’s use of
k-contexts. Unfortunately, polynomial does not mean fast in
practice. We implemented these algorithms in python: even the
more efficient one took nearly 5 hours to run on our while
benchmark. Work on strong learning [28] learns grammars
with good parse trees—over tokenized inputs. Again, because
it uses full context information, it does not scale to large ex-
ample sets and overgeneralizes on non-substitutable grammars.
This highlights the practical importance of k-contexts.

Also related is the field of automata learning; learnlib [29]
is a state-of-the-art Java framework implementing several of
these algorithms. In particular, it provides an implementation
of the TTT [30] algorithm for learning VPDA. These automata
accept a subclass of deterministic context-free languages [31].
TTT is optimized for situation where the key structure of in-
puts used to query the oracle can be collected in a prefix-closed

set, as in learning from logs of system behavior. This is less
well-suited to program inputs with multiple distinct recursive
structures. TTT also relies on the stronger assumption of a
minimally-adequate teacher, rather than a blackbox oracle.

Another branch of works use grey- or white-box information
about the oracle to learn grammars. Lin et al.’s work exam-
ines execution traces in order to reconstruct program inputs
grammar [32], [33]. AUTOGRAM [6] tracks input flows into
variables, and uses this dataflow information to learn a well-
labeled grammar. Mimid [7] goes a step further, tracking the
control-flow nodes in which input characters are accessed.
It directly maps this control-flow structure to the grammar
structure, and again can take advantage of function names. The
use of this additional oracle information may make the final
grammars more robust and speed up the inference process.
On the other hand, ARVADA’s blackbox assumption makes
it flexible when this information is not readily accessible, or
for strangely-structured programs. Our tinyc benchmark was
taken directly from Mimid’s evaluation, and ARVADA achieved
an average F1 score 0.81, compared to Mimid’s 0.96. This is
impressive given that ARVADA uses the oracle as blackbox.

Section IV-C discussed the use of deep learning to learn
input structures for fuzzing. Other techniques do something
like grammar mining to increase the effectiveness of fuzzing.
Parser-directed fuzzing [34] uses direct comparisons to input
bytes to automatically figure out tokens of the input structure;
it works best on recursive-descent parsers. GRIMOIRE [35]
leverages a sort of one-level grammar by denoting “nontermi-
nal” regions of the code as those which can be changed while
maintaining a certain kind of branch coverage.

Lastly, the Sequitur compression algorithm resembles the
bubbling phase of ARVADA, bubbling sequences that appear
with high frequency [36]. SEQUIN [37] extends Sequitur to
mine attribute grammars. Neither algorithm allows for recur-
sive generalization by merging bubble-induced nonterminals.

VII. CONCLUSION

We presented ARVADA, a method for learning CFGs from
example strings and oracles. We found that ARVADA out-
performed GLADE in terms of increased generalization on
11 benchmarks, with a higher F1 score on average on 9 of
these benchmarks. These two benchmarks on which ARVADA
performs relatively less well are a regular language (for URLs)
and a language with more complex regular expressions for
tokens. This, along with qualitative analysis of the inputs
generated by ARVADA and GLADE, suggests that ARVADA
does best in learning recursive structures over tokens, and
that a compelling avenue for improvement is a separate
token learning step. ARVADA is available as open source at:
https://github.com/neil-kulkarni/arvada.
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