Directed or Undirected: Investigating Fuzzing Strategies in a
CI/CD Setup (Registered Report)

Madonna Huang
University of British Columbia
Vancouver, Canada
huicongh@cs.ubc.ca

Abstract

Fuzzing best practices suggest that fuzzing should be run for at
least 24 hours, if not longer. This recommendation makes it hard to
integrate fuzzing into CI/CD contexts, to rapidly check a commit
for bugs. Existing studies on CI/CD fuzzing simulated a CI/CD en-
vironment by running undirected fuzzers on Magma benchmark
programs, which have multiple bugs injected into a single version
of the program. Directed fuzzers, such as AFLGo, aim to generate
inputs that reach specific target locations in the program being
fuzzed. Thus, they should be more effective at fuzzing in a CI/CD
environment. In this study, we propose to evaluate both directed
and undirected fuzzers in a simulated CI/CD environment. Like
prior work, we will use Magma as a source of benchmarks, and
run fuzzers for 10 minutes. Unlike prior work, we will start the
fuzzing process from a saturated corpus, rather than Magma’s de-
fault corpus. Also unlike prior work, we will run the fuzzers on
versions of Magma programs with a single bug injected. To deal
with the threat that Magma patches give directed fuzzers access to
too precise information as to the bug location, we will also conduct
experiments where we add additional lines of target code, to evalu-
ate the sensitivity of directed fuzzers. Our registered report gives
preliminary results on a small subset of benchmarks.

CCS Concepts

« Software and its engineering — Software testing and debug-
ging.

Keywords

continuous integration, fuzz testing, directed fuzz testing

ACM Reference Format:

Madonna Huang and Caroline Lemieux. 2024. Directed or Undirected: In-
vestigating Fuzzing Strategies in a CI/CD Setup (Registered Report). In
Proceedings of the 3rd ACM International Fuzzing Workshop (FUZZING °24),
September 16, 2024, Vienna, Austria. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3678722.3685532

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FUZZING °24, September 16, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1112-1/24/09

https://doi.org/10.1145/3678722.3685532

33

Caroline Lemieux
University of British Columbia
Vancouver, Canada
clemieux@cs.ubc.ca

1 Introduction

To keep up with the ever-increasing pace of technology advance-
ments, software development nowadays often requires short itera-
tions of product life cycles [2]. Continuous integration/continuous
deployment (CI/CD) is one of the most popular ways to enable
fast and reliable releases of software products in both industry and
open source [30]. Standard CI/CD pipelines include pushing the
new code in commits to the repository and automating the build,
test, and deployment phases to deliver the program to production
[23]. The automation in CI/CD has shown effectiveness in improv-
ing development quality and productivity, enhancing an agile and
collaborative working environment for developers[3].

A crucial part of CI/CD is testing. Testing can help detect soft-
ware defects at an early stage before production. Normally, 75% of
errors appear in the first year after release [29]. Therefore, locating
and fixing errors in CI/CD may reduce software maintenance costs,
which constitute around 60% to 80% of the total software life cycle
costs [10]. If bugs remain uncaught by CI/CD, common practices
such as code cloning may propagate the bugs to different places,
further decreasing development efficiency [19].

One approach to increase the robustness of CI/CD pipelines
would be to add automated testing. A widely adopted automated
testing technique is fuzzing (fuzz testing), which feeds programs
with malformed and unexpected inputs. The term was coined by
Miller for a university operating system class in the late 1980s [18].
These days, fuzzing has been proved to efficiently expose security
loopholes and software defects in various domains including net-
work security, web services, FinTech systems, etc [4, 22, 27]. The
launch of Google’s free OSS-Fuzz testing service further popular-
ized fuzzing, by helping discover over 8,800 vulnerabilities and
28,000 bugs fixed across hundreds of critical open source projects
[6].

The automation and effectiveness of fuzz testing seems to meet
the needs for CI/CD testing. The goal of fuzzing is to find inputs
that have unusual behaviours such as causing as many unique pro-
gram crashes as possible. However, it usually takes hours of run
to exploit a fuzzer’s potential to collect such inputs. As Klees et al.
suggest in their paper on fuzzing benchmarking practices [12], a
timeout of 24 hours is recommended for a rigorous evaluation of
fuzzers. However, testing each pull request for 24 hours is infeasible
in a realistic setting. Fowler notes that 10 minutes is considered as
a “reasonable” build time in CI/CD pipelines [12], which is substan-
tially shorter than 24 hours [7]. Thus, directly following common
fuzzing practices in CI/CD is in conflict with the original goal of
such pipelines to update code bases quickly and frequently.

Fortunately, prior work by Klooster et al. has confirmed that
running fuzzers in continuous security testing can cover important

https://orcid.org/0009-0000-2533-139X
https://orcid.org/0000-0002-9610-8520
https://doi.org/10.1145/3678722.3685532
https://doi.org/10.1145/3678722.3685532

FUZZING 24, September 16, 2024, Vienna, Austria

bugs even with a short timeout of 10 minutes [13]. Despite show-
ing that fuzzing in CI/CD is possible, their work focuses only on
evaluating coverage-guided fuzzers like AFL++. The authors did
not evaluate directed fuzzers like AFLGo as they claimed that their
commit simulation will interfere with the fuzzing performance.
However, directed fuzzers are tailored to perform patch testing [5],
which is similar to the CI/CD scenario: both aim at testing whether
the changed statements will introduce new security vulnerabilities.
For this reason, we are interested in studying whether directed
fuzzers can live up to their potential in continuous fuzzing, i.e.,
fuzzing in a CI/CD context. In order to do this, we will adopt a
different strategy than Klooster et al. [13] to simulate commit-level
fuzzing.

In this work, we plan to evaluate both directed and undirected
fuzzers in a continuous testing setup. Similar to previous studies
[13], we simulate the CI/CD pipelines by fuzzing patched code with
a small time budget. We select Magma, a widely used fuzzing bench-
mark suite that consists of 9 open source projects with critical bugs
and vulnerabilities, as our source of libraries and buggy patches.
We inject only a single buggy patch at a time, to simulate commits
containing each of these patches separately. We integrate AFLGo
and Fuzz Factory Diff (FFD) as two exemplary directed fuzzers into
Magma. Further, in a realistic CI/CD setup, we assume that the
Program Under Test (PUT) has been thoroughly fuzzed at a prior
version. Thus, instead of using the initial seed inputs provided by
Magma as in prior work [13], we collect a seed corpus by running
a 24-hour fuzzing campaign with AFL++. This allows us to inves-
tigate CI/CD fuzzing in a setting with a close-to-saturated seed
corpus, which might also lead to different results compared to prior
work.

We seek to investigate the following research questions:

Are directed or undirected fuzzers more efficient at reaching

code change locations in a CI/CD setting?

o Are directed or undirected fuzzers more efficient at triggering
the bug(s) embedded in the code change?

e How easy it is to set up the directed and undirected fuzzers
in CI/CD fuzzing?

e How sensitive are directed fuzzers to “bloat” in commits,

i.e., can directed fuzzers still reach an injected bug if given

additional target locations?

To answer these questions, our first experiment will investigate
whether directed or undirected fuzzers can generate inputs that
reach the changed code and trigger the injected bugs more effec-
tively. To do this, we simulate commits by injecting a single buggy
Magma patch at a time, and giving this patch as the target location
to the directed fuzzers. In terms of evaluating bug-triggering capac-
ity, there remains a threat to external validity: these patches, which
exactly inject a bug, may not be representative of real commits.
Therefore, we will add additional experiments to measure whether
directed fuzzers’ performance degrades when the target locations
are broader than simply the inserted patch. In particular, we will
add additional lines of code, beyond the buggy patch, as targets
for each “commit”, and run directed fuzzers on these augmented
commits.

34

Madonna Huang and Caroline Lemieux

We have conducted a preliminary study by evaluating AFL,
AFL++, libFuzzer, and AFLGo on a subset of the libraries provided
by Magma. The contributions of our registered report are:

e Preliminary analysis and comparison of the fuzzing per-
formance of different directed and undirected fuzzers in a
simulated setting of CI/CD.

o Validating whether the suggested 10-minute timeout from
previous findings is effective at exposing critical bugs if we
start fuzzing with a saturated seed corpus.

o Evaluating whether previous findings that short fuzzing cam-
paigns are effective at exposing critical bugs hold in a single-
bug injection setting.

e Designing an evaluation plan to study the fuzzers on a
broader benchmark set, as well as study the fuzzers’ sen-
sitivity of code changes.

We will conduct the full experiments upon the acceptance of
this paper by: evaluating all the five fuzzers on all libraries and
performing experiments evaluating directed fuzzers’ sensitivity
to the size of code changes. In the end, we aim at establishing a
detailed guideline for continuous fuzzing, which will: compare and
contrast directed and undirected fuzzers in the CI/CD testing setup,
validate the recommended 10-minute timeout for both types of
fuzzers, and summarize the fuzzers’ capability to detect bugs when
the code changes contain more than just bugs.

The rest of the paper is organized as follows. Section 2 explains
the CI/CD testing and related background on fuzzing. Section 3
details the benchmarks, fuzzers, and CI/CD simulation in our ex-
perimental setup. Section 4 describes the implementation details.
Section 5 analyzes the results in our preliminary evaluation. Sec-
tion 6 explains our plan for the complete evaluation of this work.
Section 7 lists the requirements that we plan to fulfill for revis-
ing the registered report. Section 8 outlines the related work and
section 9 summarizes our current conclusion.

2 Background and Motivation

2.1 CI/CD Testing

Continuous Integration (CI) and Continuous Delivery (CD) are
widely accepted engineering practices that enable organizations
to have frequent and steady releases of new features and products,
improve code quality, and increase team productivity [26]. The CI
process includes software development, building, and testing. The
CD process further extends CI by automatically and continuously
deploy applications to a production environment [26]. In the CI/CD
pipelines, small and frequent updates are encouraged: previous
study finds that around 21 commits are made per day for 575 open
source projects [13].

Testing each commit is impractical in day-to-day development.
Indeed, reducing the costs in CI/CD pipelines is a long-lasting prob-
lem [26]. Shahin et al. suggest supporting automated testing in
CI/CD to reduce repetitive work and test case execution costs [26].
On the other hand, they note that the lack of automated testing
approaches and the poor test quality are challenging for success-
fully adopting CI/CD practices [26]. This makes fuzzing, which
automates the input generation and testing process, seem like a
good fit in continuous testing. Note that in this paper, we use the

Directed or Undirected: Investigating Fuzzing Strategies in a Cl/CD Setup (Registered Report)

term fuzzers to refer to programs that automatically generate test
inputs and feed these inputs into the PUT to detect bugs.

There are two common ways of fuzzing a program: either test
the compiled binary of the PUT directly with the generated inputs
or feed inputs into a fuzzing driver that serves as the main entry
point to execute a specific function [13]. In either case, fuzz testers
do not need to manually write and run tests themselves as they
do in traditional deployment pipelines [26]. Shahin et al. suggest
that the poor infrastructure for automating tests can lead to the
lack of fully automated testing in CI/CD practices [26]. Thanks to
various mature fuzzing platforms such as OSS-Fuzz, fuzz testers do
not need to implement additional infrastructures to automate tests.
Test quality is also one of the concerns in automating deployment
on a continuous basis [26]. For instance, having a high number of
test cases with low test coverage or long running tests can signifi-
cantly slow down the deployment process [26]. Although fuzzers
may not always generate inputs with good qualities such as being
syntactically valid or having new code coverage, the automation of
input generation makes it easier to quickly explore the input space.

However, the recommended timeout for fuzzing is 24 hours
[12], which is infeasible for testing frequently in CI/CD. Rangnau
suggest a “reasonable” threshold for build or test time in CI/CD is 10
minutes [23]. Using such a short timeout for fuzzing may not fully
exploit the fuzzer’s potential to generate inputs that maximize code
coverage or discover “interesting” behaviours such as revealing
bugs. Thus, investigating whether a short fuzzing campaign is
effective at exposing vulnerabilities in the CI/CD setup is crucial
for adopting fuzzing in such pipelines. There exists prior work that
proposes a “reasonable” timeout in continuous fuzzing, which we
discuss in details in the following subsection.

2.2 Prior Work of Fuzzing in CI/CD

Klooster et al. followed the Magma’s approach of front-porting bugs
from previous bug report to a stable version of libraries [13]. The
authors simulate commits by applying the full set of Magma patches
with bugs. This allows them to evaluate when the bugs are reached
and triggered by fuzzers via Magma’s lightweight instrumentation
[13]. They choose not to use live commits as the ground truth
knowledge of the existence and locations of bugs are unknown
[13]. We adopt this front-porting approach for the same reason: to
evaluate whether fuzzers can trigger the injected bugs.

Unlike what we propose, Klooster et al. injected all the bugs
provided by Magma into each library [13]. However, this may in-
fluence the fuzzing results in [13] because the patches contain only
bugs and most libraries have around 20 bugs injected. Clearly, it
is unlikely for real commits in a pull request to contain so many
bugs. In our study, we will apply patches with a single bug for each
fuzzing experiment to simulate a more realistic commit. In addition,
we plan to conduct the sensitivity experiments that add additional
target locations—beyond the inserted bugs—to evaluate whether
fuzzers can still trigger the bugs when the patch contains not only
the bug but also other lines of code.

Further, seed inputs are crucial as the fuzzing performance may
depend on whether the initial seeds can cover interesting code
paths or provide good coverage as the starting point [21]. Prior
work starts the continuous fuzzing with the set of initial seeds
provided by Magma [13]. However, these initial seeds are sourced

35

FUZZING ’24, September 16, 2024, Vienna, Austria

from the original code base of libraries and may not provide a
good code coverage for fuzzing. Thus, we collect the initial seed
corpus by running a fuzzing campaign with AFL++, one of the most
popular state-of-the-art fuzzers. We use the recommended timeout
of 24 hours, hoping to get a saturated initial corpus that can cover
most of the reachable code of the target library. We want to use a
saturated corpus so that the fuzzer will focus more on generating
and mutating inputs that can cover the changed code, instead of
the reachable code of the original library.

Moreover, Klooster et al. did not evaluate any directed fuzzers
in their study: they claim that “[their] technique of simulating
commits would have interfered with the results” [13]. Essentially, if
the changed code contains exactly the bug to be injected, this might
be seen as giving the directed fuzzers an unfair advantage. We agree
with this concern but design additional experiments to address it.
In particular, our sensitivity experiments will address this concern
by creating a set of addition “augmented” commits, where we mask
the locations of the injected bugs by adding additional, non-buggy,
lines of code as targets.

Finally, the prior work also suggests that running per-commit
fuzzing campaigns of 10 minutes achieves an optimal balance be-
tween the recommended testing time and the effectiveness of contin-
uous fuzzing [13]. We plan to validate this finding for both directed
and undirected fuzzers.

2.3 Directed Fuzzing

Directed fuzzing, as the name suggests, focuses on testing a spe-
cific program location of the PUT rather than the whole. There
exists various directed fuzzing techniques including the taint-based
directed white box fuzzing [8], directed grey box fuzzing [5], and
directed symbolic execution [15]. We are interested in the directed
grey box fuzzing that generates inputs with the goal to reach a
specific set of program locations. This is applicable in a CI/CD
setup because we want to find inputs that can exercise the changed
code. And grey box fuzzing is the state-of-the-art in vulnerability
detection without heavy-weight instrumentation [5]. For example,
the most commonly used fuzzer AFL++ is a such a grey box fuzzer
that generates inputs based on the code coverage feedback.

In our study, we choose to investigate AFLGo, which awards
generating inputs with shorter distance to the target program loca-
tions [5]. In particular, AFLGo first calculates the distance of each
basic block to the targets from the call graphs and intraprocedural
control flow graphs (CFGs) generated at compile time. Then, AFLGo
aggregates the distance values of each basic block exercised by the
seed inputs to compute the mean value for minimization purpose.
The static analysis stage of AFLGo sometimes can take up to hours
to instrument the PUT and compute the distance values. Thus, for
comparison purpose, we pick another directed greybox fuzzer Fuzz
Factory Diff (FFD) that does not require such heavy computation at
compile time. FFD uses a simpler heuristic that rewards generating
inputs that can both exercise the target code locations and explore
new coverage after hitting these targets [21]. Unlike AFLGo, FFD
does not require the knowledge of each basic block’s distance to
target program locations. In addition to the inputs with new cov-
erage, FFD also saves inputs when they exercise a new execution
path after hitting the target code location [21].

FUZZING 24, September 16, 2024, Vienna, Austria

3 Experimental Design

We outline the experimental setup for the complete evaluation in
this section. For the preliminary evaluation, we ran experiments on
a subset of the libraries and bugs provided by Magma, in order to
give an idea of what our broader evaluation will do. Our preliminary
evaluation does not include the fuzzer FFD and the experiments
that investigate the sensitivity of fuzzers to the amount of changed
(target) code.

3.1 CI/CD Simulation

A key difference between our work and the prior study [13] is that
we simulate the commits in CI/CD by injecting one bug in each
commit instead of injecting all bugs at the same time. Our simulated
commits consist of an injected bug as we want to evaluate a fuzzer’s
capability of both reaching the changed code and triggering the vul-
nerability introduced by the change. As explained in Section 2, we
inject one bug at a time to address the concern in the prior work [13]
that injecting multiple bugs in commits might interfere with the
fuzzing performance. In addition, using a close-to-saturate corpus
might affect the fuzzing results. Most grey box fuzzers use code
coverage as guidance, meaning that they will save inputs that exer-
cise new parts of the program. When we start continuous fuzzing
with a saturate corpus, executing these inputs already explore most
of the reachable execution paths in a program before applying the
code changes. Therefore, mutating these inputs might save some
efforts of exploring the reachable execution space of the program
before the changes. Consequently, the fuzzer might have a higher
chance of generating inputs that can reach new execution paths,
and in a continuous setup, that is the changed code.

We will run the fuzzing campaigns for each simulated commit
that contains a single bug separately. We only simulate one commit
for each experiment because pushing the changed code in a single
or multiple commits does not affect how the fuzzers generate inputs
and feed them into the PUT. We will include sensitivity experiments
in the final evaluation to better simulate real commits that contains
not just bugs, but also other changed lines, and study whether the
fuzzers can still reach or trigger the bugs when the changed code
does not reflect the precise location of the bugs. This is described
precisely in Section 6. Since each library in Magma has multiple
patches for bugs, we use the term benchmark to refer to a pair of
library and the ID of the injected bug in the rest of the paper. As
Table 1 shows, we assign a unique ID to each benchmark in the
format of the library name followed by the numeric ID of the bug
inserted.

In our CI/CD simulation, the configuration for each fuzzing
campaign includes the library and bug ID to identify benchmarks, a
fuzz target, and additional arguments to run the PUT. We also adopt
Magma’s instrumentation to decide whether a bug is triggered and
reached. The source-code instrumentation in Magma reports a bug
is reached when the line of the inserted buggy code is reached. A
bug is triggered when the input satisfies the faulty condition [9].
Magma further distinguishes detecting a bug from triggering a bug.
A bug is detected when a faulty behaviour is observed. In order to
collect the bug detection data, we need to recompile the libraries
with sanitizers. We will leave the evaluation of bug detection rate
for the final evaluation.

36

Madonna Huang and Caroline Lemieux

Table 1: Benchmark details for the preliminary evaluation.

Benchmark Library BugID Fuzz Target

libpng001 libpng PNGO001 libpng_read_fuzzer

libtiff012 libtiff TIF012 read_rgba_fuzzer

libxml003 libxml2 ~ XML003 libxml2_xml read_memory_fuzzer
openssl001 openssl SSL001 asnl

openssl009 openssl ~ SSL0O09 x509

In each experiment, we prepare the original library and the one
with the bug inserted. We first collect the initial seed corpus from
fuzzing the original code with a 24-hour timeout using AFL++. Then,
we use this corpus to fuzz the code with changes for 10 minutes,
which has been proved to show the effectiveness of continuous
fuzzing by Klooster et al [13].

3.2 Benchmarks

Following the prior work [13], we choose the same fuzzing platform,
Magma, which supports various fuzzers with 9 widely-used open-
source libraries and 138 critical bugs as shown in Table 2. Similar
to the reasons listed by Klooster et al. [13], we pick Magma as it
provides the ground-truth for bugs and their exact locations in the
PUT. This satisfies our needs for simulating commits that contain
localizable bugs.

Magma already supports a variety of fuzzers including AFL,
AFL++, and libFuzzer. The clean code structure in Magma also
makes it easy for users to integrate new fuzzers. In particular,
Magma organizes the fuzzers, libraries, and other utilities in sepa-
rate folders. The folder of each fuzzer provides step-by-step scripts
to build the fuzzers, build and instrument the libraries, run the
fuzzing campaign, etc. Additionally, Magma instruments the tar-
get programs to report whether the bug is reached, triggered, or
detected. We utilize this instrumentation to evaluate whether a
fuzzer is effective at reaching and triggering the bugs in the patches
applied to the libraries.

3.3 Fuzzers and Fuzz Targets

For undirected fuzzers, we pick AFL++ and libFuzzer, two state-
of-the-art grey box fuzzers. We pick these two as they are already
integrated into Magma, evaluated in the prior work of continuous
fuzzing [13], and widely used in modern fuzzing platforms such
as OSS-Fuzz [13]. For directed fuzzers, we select AFLGo and Fuzz
Factory Diff (FFD) as explained in Section 2. Both AFLGo and FFD
generate inputs based on heuristics that guide the inputs towards
exercising a set of program locations in the format of file name
followed by the line number of code. We additionally include AFL
as both AFLGo and FFD are built on top of it. We want to examine
how well AFLGo and FFD perform compared to the AFL baseline.

It is also important to select fuzz targets instead of fuzzing with
all available targets to save computing resources [13]. We use the
fuzz targets provided by Magma as the prior work does [13]. In our
preliminary study, we select the fuzz targets outlined in Table 1
based on whether the changed code will affect the APIs being called
in the fuzz targets. Identifying the relevant fuzz targets requires
nontrivial efforts. Therefore, we plan to adopt the checksum-based
method in [13] by calculating the checksum of the fuzz target before

Directed or Undirected: Investigating Fuzzing Strategies in a Cl/CD Setup (Registered Report)

Table 2: Libraries and bugs provided by Magma.

Library File Type Language Fuzz Targets Bugs
libpng PNG C 1 7
libtiff TIFF C 2 14
libxml2 XML C 3 17
openssl Binary blobs C 6 20
libsndfile Audio files C 1 18
poppler PDF C++ 3 22
sqlite3 SQL queries C 1 20
php Various C 4 16
lua Various C 1 4

and after the commit to decide whether the target is affected by the
changes. It is also worth noting that not all fuzz targets are suitable
for our experiments due to the limitations of libFuzzer. libFuzzer,
by design, tests specific functionalities of the PUT by passing the
inputs to a fuzzing entry point, i.e., target function. Therefore, we
cannot fuzz the compiled binary of the libraries with libFuzzer and
thus exclude these from our selection of fuzz targets.

4 Implementation

We conduct all experiments using Magma as the uniform fuzzing
platform. In this section, we describe the key changes we have
implemented in Magma in preparation for our experiments.

Customization of fuzzing experiments. Magma inserts bugs
into libraries by applying patches that contain the buggy code. By
default, Magma only allows applying all the patches in the patches
folder. Therefore, users need to move the patches outside of the
folder to exclude inserting certain bugs. We modified the scripts
in Magma to support either applying all patches (default) or the
patches specified in a configuration file, allowing the users to switch
each bug on and off at ease. We additionally add support for user-
defined paths to corpus for each experiment: Magma only allows a
fixed path to corpus. In this way, users can better customize each
fuzzing campaign by changing the configuration files.

Integration of fuzzers. We integrated two directed fuzzers,
AFLGo and FFD, into Magma. While the organization of scripts in
Magma separates each building block of fuzzers neatly, we spent
nontrivial amount of time debugging the instrumentation errors
when building the projects with the new fuzzers. Build errors are
common challenges in fuzzing. As Nourry et al. suggest, the in-
compatibility between fuzzing environment and project, the bugs
in fuzzer, issues in build tools or external dependencies, as well as
issues in corpus can lead to build failures [20]. In fact, this is not
the first time that someone tries to integrate AFLGo into Magma:
a 2021 issue was opened to discuss this matter [28]. However, the
issue of supporting directed fuzzers in Magma remains open till the
time we write this paper. The build errors when compiling libraries
with AFLGo are still unresolved after more than three years since
the issue was first brought up. In our work, we fixed all the build
errors when building the targets with AFLGo.

Automation of Generating Target Program Locations. AFLGo
requires instrumenting the libraries twice: one pass to compute
the call graphs and intraprocedural CFGs in order to compute the
distance of the seed inputs to the target program location, and the

37

FUZZING ’24, September 16, 2024, Vienna, Austria

Table 3: Mean survival time of the bugs reached (R) and trig-
gered (T) for the selected benchmarks. Rounded to the near-
est second.

AFL AFL++ libFuzzer = AFLGo

R T R T R T R T
libpng001 5 NA 5 NA 13 NA 5 NA
libtiff012 5 456 5 504 22 485 5 592
libxml003 5 NA 5 140 NA NA 5 NA
opensslo01 5 NA 170 NA 29 NA 5 NA
openssl009 5 NA 5 NA NA NA 5 NA

other pass to instrument the libraries with the computed distances.
We further automate the process of generating the locations of the
changed code to target files for both AFLGo and FFD. Previous
attemps to integrate AFLGo into Magma [28] retrieves the informa-
tion of the changed code from pre-generated target files. However,
this approach is not scalable when the code changes or the number
of benchmarks is huge. We use the external tool showlinenum as
recommended in the AFLGo documentation to generate the pro-
gram locations from the output of git diff [1]. This automation is
beneficial for fuzzing large commits or running experiments on
multiple benchmarks.

5 Preliminary Results

We select five benchmarks as detailed in Table 1 to run the prelim-
inary evaluation of the four fuzzers: AFL, AFL++, libFuzzer, and
AFLGo. We do not include FFD or perform the experiments the
sensitivity of fuzzers due to time constraints. Each experiment for
a single benchmark is repeated 10 times to reduce the effect of
randomness in fuzzing [12]. In our proposed evaluation, we will
run these experiments for all the five fuzzers on many more bench-
marks, as well as run our sensitivity experiments.

We perform all preliminary experiments on a machine with Intel
core i7-12700K processor and 64 GB memory. We summarize the
findings as below.

5.1 Can fuzzers reach the inserted bugs?

As Figure 1 shows, AFL, AFL++, and AFLGo generated inputs that
can reach the bugs in the changed code for all the five benchmarks.
libFuzzer performed the worst as the inputs generated can only
reach the bugs for three benchmarks. Table 3 shows the mean
survival time for the bugs in all experiments. We adopt Magma’s
approach that uses the Kaplan-Meier estimator to model a bug’s
survival function. The shorter the survival time is, the better a a
fuzzer’s performance is because the survival function computes
the probability that a bug remains undiscovered (i.e., “survived”)
within a given time [9]. As shown in Table 3, AFL and AFLGo
are most effective at generating inputs that reach the bugs in the
changed code. Both have a mean survival time of 5 seconds for the
10 repetitions of experiments per benchmark. This suggests that
on average, it takes 5 seconds until AFL and AFLGo generates an
input that can reach the inserted bug. AFL++ performed slightly
worse as the mean survival time for the openssl001 benchmark is
170 seconds (around 3 minutes).

FUZZING 24, September 16, 2024, Vienna, Austria

B Reached mm Triggered

Number of Benchmarks

afl libfuzzer

aflplusplus
Fuzzer

aflgo

Figure 1: The number of benchmarks that the fuzzers have
generated at least an input that can reach or trigger the bug
in the changed code.

Based on the number of benchmarks for which the fuzzers have
successfully reached the inserted bugs and the mean survival time,
AFL and AFLGo are the best-performing fuzzers. Since one is undi-
rected and the other is directed, we need the complete evaluation
to conclude which type of fuzzers is more effective.

5.2 Can fuzzers trigger the inserted bugs?

Regarding the bug-triggering capability, AFL++ performed the best
as it generated inputs that triggered the bugs in two benchmarks
while the rest only triggered the bugs in one benchmark. A short
timeout of 10 minutes seems insufficient for fuzzers to generate
bug-triggering inputs for most of the benchmarks. libtiff012 is the
only benchmark that all fuzzers have generated inputs that trigger
the inserted bug. However, none of the fuzzers have triggered the
bugs in libpng001 and the two openssl benchmarks. The time to
trigger the bug also differs across benchmarks. It took 140 seconds
(around 2 minutes) for AFL++ to trigger the bug in libxml003 while
it took three times as long to trigger the bug in libtiff012. The results
suggest that it is much harder for the fuzzers to generate inputs
that can not only reach but also trigger the inserted bugs. Moreover,
10 minutes may not allow a fuzzer to live up to its potential to
generate inputs that can reach and trigger the inserted bugs.

It is worth noting that libFuzzer has the highest execution counts
for most benchmarks except for libxml003 as Table 6 indicates. How-
ever, it is clear from Figure 1 that libFuzzer also has the least number
of bugs reached and triggered. Within the 10-minute fuzzing ses-
sion, having a higher number of executions does not guarantee
better bug-finding capability.

5.3 How easy it is to set up the fuzzers in CI/CD
simulation?

It is straightforward to run the undirected fuzzers within the Magma
framework. However, running directed fuzzers sometimes might

38

Madonna Huang and Caroline Lemieux

Table 4: The build time of fuzzers, rounded to the nearest

second.
Fuzzer AFL AFL++ libFuzzer AFLGo
Build Time (s) 4 20 3 458

Table 5: The instrumentation time of libraries, rounded to

the nearest second.

AFL AFL++ libFuzzer AFLGo
libpng001 15 18 9 22
libtiffo12 25 80 38 43
libxml003 33 71 32 37
openssl001 122 256 62 280
openssl009 223 141 123 337

Table 6: Mean execution counts during the 10-min fuzzing
campaigns, rounded to the nearest thousand.

AFL AFL++ libFuzzer AFLGo
libpng001 19,719 3,812 132,108 22,115
libtiff012 13,250 2,502 13,421 9,284
libxml003 8,155 1,803 7,391 5,296
OpenSSIOOI 120 83 190 50
openssl009 1,294 336 26,074 600

fail as it requires the correct target code locations and the corre-
sponding target functions. In the preliminary study, we correctly
generated the target program locations for the selected benchmarks
using the automatic approach suggested by AFLGo. We plan to test
whether the automatic approach works for all benchmarks in the
complete evaluation.

As Table 4 shows, the build time for undirected fuzzers is pretty
short (3-20 seconds). However, the build time for AFLGo is around 7
minutes, so it might be too time-consuming to use AFLGo in CI/CD
without compiling it in advance. As Table 5 shows, libFuzzer takes
the least average time to instrument benchmarks for four out of
the five benchmarks. For AFLGo, we use the python version of the
code to generate the distance values, which is claimed to be faster
than the original shell scripts [1]. Surprisingly, although AFLGo
requires instrumenting libraries twice, it takes roughly the same
time as AFL and AFL++ to compile the benchmarks. Note that the
two openssl benchmarks are longer than others to be instrumented,
with the shortest time of around 1 minute and the longest time of
around 5 minutes. This is consistent with the fact that the openssl
library has the largest repository size [13]. However, such a long
instrumentation time might not be suitable in a CI/CD context
because reducing the testing time is crucial for optimizing pipeline
efficiency [26].

6 Plan for a Complete Evaluation

We propose the following plan for the complete evaluation to better
answer the four research questions in Section 1.

Directed or Undirected: Investigating Fuzzing Strategies in a Cl/CD Setup (Registered Report)

We will evaluate all the five fuzzers (AFL, AFL++, libFuzzer,
AFLGo, and FFD) on benchmarks selected from the libraries and
fuzz targets provided by Magma. We use the term benchmark to
refer to a pair of library and corresponding fuzz target. There are
9 libraries in total as shown in Table 2. We plan to cover all the
libraries with a subset of available fuzz targets. In this way, we can
compare the fuzzing performance across different libraries and the
performance across different fuzz targets for the same library. Since
the number of fuzz targets and bugs vary for different libraries,
we set a cap on the number of fuzz targets and bugs per library.
In particular, we plant allow for 3 fuzz targets and 10 bugs per
library at maximum. The total number of benchmarks we aim at is
50 but not all the fuzz targets and bugs provided due to the limited
computing resources.

Benchmark selection. Ideally, we should select the fuzz targets
and bugs randomly to avoid introducing biases. However, it is not
always possible for the fuzzer to generate inputs that can exercise
the inserted code with the selected fuzz targets. Recall that we run
one fuzz target for each library with a single bug inserted. If the fuzz
target does not invoke any functions that involve the changed code,
we waste the time to fuzz the unchanged parts of the library. To
address this issue, we plan to use the checksum-based approach in
[13] to calculate and compare the checksum of a fuzz target before
and after applying the code changes. If the checksum remain the
same after the code changes, then it indicates that the fuzz target
might not be relevant for fuzzing the changed code. We hope to
prune the fuzz targets that are unable to exercise the changed code
with any inputs.

Sensitivity experiments. We will add experiments to investi-
gate the directed fuzzers’ sensitivity to the changed code. In particu-
lar, we want to study whether a directed fuzzer like AFLGo can still
reach and detect the inserted bugs when the changed code contain
not only bugs but also other lines of code (LOC). Both AFLGo and
FFD generate a target file that contains the target program loca-
tions with the format “filename: line number of the target code”.
The target file will be used to compute the heuristics used in the
two directed fuzzers. Thus, we plan to insert additional target LOC
into this target file in the same format. The configurations for the
sensitivity experiments are as follows:

o Same-file. set 2X LOC in the file with the bug as the additional
target LOC. For patch length N, we will randomly choose 2N
lines within the patched source file (but outside the patch)
to add to the target list.

o Same-project. set 4X LOC in different files including the file
with the bug as the additional target LOC. For patch length
N, we will randomly choose 2 files in the project, and 2N
lines within those files to add to the target list.

The numbers in the configurations are subject to change. We
will collect the average number of LOC per pull request based on
the recent commit histories of the libraries. Then we will use this
metric to decide how many more LOC to insert into the target file
in order to better simulate a real CI/CD setting.

Timeout experiments. We plan to validate whether the pro-
posed 10-minute timeout [13] is enough for fuzzers to generate
inputs that can reach and trigger the inserted bugs. If, however,

39

FUZZING ’24, September 16, 2024, Vienna, Austria

most fuzzers cannot find such inputs with the 10-minute time-
out, we plan to conduct additional experiments to examine which
timeout can balance the short time budget in CI/CD pipelines and
fuzzing effectiveness. The candidate timeouts are 15 minutes and
30 minutes, because timeouts longer than these two might not be
suitable for CI/CD pipelines. We will run the timeout experiments
only on the bugs missed by the first set of evaluation with the
10-minute timeout. We want to see if the fuzzers are able to find
the bugs that are unreachable with the 10-minute timeout given
more fuzzing time. Although the prior work [13] has shown that
increasing the time budget for per-commit fuzzing campaign does
not boost the fuzzing effectiveness very much, we would like to see
whether this also holds for directed fuzzers.

Additional evaluation metrics. In the preliminary evaluation,
our evaluation metrics are: the statistics related to the bugs reached
and triggered, the build time of fuzzers, the instrumentation time
of libraries, and the mean execution counts during fuzzing. We will
add the following metrics in the complete evaluation:

e The branch coverage of the changed code.

e The branch coverage of the entire library after hitting the
changed code.

e The number of times the fuzzer detects the bugs and the
mean survival time of the bugs detected.

With the additional metrics, we hope to answer which fuzzer
performs better in terms of increasing the code coverage of the
changed code and encouraging exploring deeper in the program
after hitting the changed code. Moreover, we want to study if these
coverage measures are correlated to a fuzzer’s capability of gener-
ating inputs that reach, trigger, and detect the inserted bugs in the
changed code. In addition, we want to compare the bug detection
rate for all the five fuzzers. We will add statistical tests to com-
pare the quantitative results in the complete evaluation for better
assessment.

7 Revision Requirements

In the revision of the registered report, we plan to extend the scope
of experiments in terms of the choice of directed fuzzers and the
number of benchmarks. We plan to include more recent directed
fuzzers such as FishFuzz [31] and DAFL [11] because both AFLGo
and Fuzz Factory Diff are developed before 2020. We will run fuzzing
campaigns on at least 50 benchmarks from Magma, where each
benchmark refers to a pair of library in Magma and the ID of the
injected bug. As for the experiment design, we will provide more
detailed explanation and evidence for configurations including
but not limited to the fuzzing setup for collecting the initial seed
corpus, where and how to add additional target code locations for
the sensitivity experiments, and settings for different fuzzers. For
example, instead of running AFLGo with the default exploration
mode first, we will change to run AFLGo with the exploitation
mode from the first second of the fuzzing campaign. This is because
AFLGo switches from exploration with coverage-based fuzzing
algorithm to exploitation with directed fuzzing algorithm after
20 minutes of fuzzing. Since we start fuzzing experiments with a
saturated seed corpus, we want to fully investigate the performance
of AFLGo’s directed fuzzing logic in the CI/CD context and thus
we plan to start fuzzing with the exploitation mode of AFLGo.

FUZZING 24, September 16, 2024, Vienna, Austria

8 Related Work

Testing plays an important role in CI/CD pipelines. The concept
of continuous testing originally referred to executing unit tests on
a continuous basis [16]. Now the term refers to running tests in
the background to provide rapid and frequent feedback for devel-
opers to detect critical errors before deploying applications to a
production environment [16].

Continuous testing can enhance development productivity. Saff
and Ernst propose a model for investigating the usefulness of con-
tinuous testing [24]. Their study first shows that regressions errors
caught earlier are easier to fix [24]. Then they evaluate three tech-
niques to reduce the development time wasted on discovering and
fixing regression errors. They compare running continuous test-
ing and manually running tests with different test frequencies and
test case prioritization strategies. Saff and Ernst conclude that con-
tinuous testing, that uses limited CPU resources to run tests in a
continuous setup, can reduce the wasted development time by 92-
98% over the other two approaches [24]. The authors further show
in a study that developers that used continuous testing are three
times more likely to complete the coding task before the deadline
[25]. Most participants in their study confirmed the usefulness of
continuous testing and found it helpful for them to write better
code faster [25].

Challenges like reducing test time, increasing the visibility of test
results, and supporting (semi-)automated testing are important for
testing in a continuous setup [26]. However, testing each commit is
not sustainable due to limited computing resources [13]. A study of
Google-scale continuous testing has confirmed that code modified
more often is more likely to cause breakages than the one modified
less often [17]. Motivated by similar findings, Zhu and B6hme
propose a regression grey box fuzzer that focuses on fuzzing code
that was changed more recently [32]. However, they found that
regression errors are hard to find even with a multi-day time budget
and that fuzzing efforts are needed for the newly changed code
even after a project is well-fuzzed [32]. To better address detecting
bugs in recent code changes, Klooster et. al evaluate three modern
fuzzers in a continuous setup [13], which inspires our work in this
paper. Klooster et al. have shown that selecting fuzz targets can
reduce the computational resources for testing and running fuzzers
for 10 minutes strikes a good balance between the recommended
continuous testing time and fuzzing effectiveness [13]. Following
their findings, we construct the experimental plan to select fuzz
targets based on checksum, include directed fuzzers for comparison,
and use the same fuzzing timeout. We compare and contrast our
work with this prior work in Section 2.

In our CI/CD simulation, we run fuzzing campaigns for changed
code. Our setup and findings might be applicable to patch test-
ing, which automatically tests code patches [15]. To test software
patches, Marinescu and Cadar propose KATCH, an automated tech-
nique that uses symbolic execution to generate inputs that can
quickly reach the code patch [15]. Their experiments show that
automatic techniques can increase patch coverage, which is gen-
uinely hard to reach a high value, and detect bugs during testing
[15]. Kuchta et al. further proposes executing the old and new ver-
sions of the code in the same symbolic execution instance, with the
old shadowing the new one [14]. The shadow symbolic execution

40

Madonna Huang and Caroline Lemieux

technique generates inputs when the execution of the old and new
code versions diverges in order to explore new behaviours of the
new code [14]. However, the symbolic executions used in these
prior work of patch testing require heavy-weight program analysis
and constraint solving, which might not be scalable for large-scale
projects or working environments that need rapid test feedback. If
our work can show that running fuzzers for a short period of time
can reach and detect bugs in the changed code, our experimental
setup might be useful for patch testing. For example, we can collect
an almost saturated corpus from fuzzing the old version of code for
24 hours, and then run the fuzzers for on the patched version for 10
minutes. This CI/CD simulation approach might lead to different
fuzzing performance than using traditional patch testing tools like
KATCH.

9 Conclusion

In the preliminary evaluation, a timeout of 10 minutes is sufficient
for both directed and undirected fuzzers to generate inputs that
can reach and trigger some but not all bugs inserted into the li-
braries. AFL++ seems to be the best-performing fuzzer from the
preliminary results. AFL++ triggered the bugs in two out of the five
selected benchmarks while the others triggered the bug in only one
benchmark. However, with a limited set of benchmarks, we cannot
conclude which fuzzer performs the best in continuous fuzzing yet.
Additionally, the build time for AFLGo is around 7 minutes, which
makes it a less optimal choice of fuzzer especially when the time
budget is small. However, the instrumentation time of libraries for
AFLGo when using the fast python version of code to compute
seed distance is almost compatible to the time for other fuzzers.
This suggests that if we have already compiled AFLGo in the CI/CD
pipelines, we can still use AFLGo to test programs without spending
most of the 10-minute time budget on building the fuzzer. Overall,
using a 10-minute timeout under a single bug injection setup in con-
tinuous fuzzing experiments allow both directed and undirected
fuzzers to generate inputs reaching the changed code. We need
more experiments to compare the bug-triggering capabilities of
fuzzers and conclude either directed or undirected fuzzers perform
better in the CI/CD context. We will summarize our findings after
the complete evaluation, aiming to provide a detailed guidelines
for continuous fuzzing.

Acknowledgements

This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) and Naval Information
Warfare Center Pacific (NIWC Pacific) under Contract No. NN66001-
22-C-4027. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do
not necessarily reflect the views of DARPA or NIWC Pacific.

References

[1] 2017. AFLGo: Directed Greybox Fuzzing. https://github.com/aflgo/aflgo. Ac-
cessed: 2024-06-20.

Samar Al-Saqqa, Samer Sawalha, and Heba Abdelnabi. 2020. Agile Software
Development: Methodologies and Trends. Int. J. Interact. Mob. Technol. 14 (2020),
246-270. https://api.semanticscholar.org/CorpusID:225548331

S.A.LB.S. Arachchi and Indika Perera. 2018. Continuous Integration and Con-
tinuous Delivery Pipeline Automation for Agile Software Project Manage-
ment. In 2018 Moratuwa Engineering Research Conference (MERCon). 156-161.
https://doi.org/10.1109/MERCon.2018.8421965

[2]

(3]

https://github.com/aflgo/aflgo
https://api.semanticscholar.org/CorpusID:225548331
https://doi.org/10.1109/MERCon.2018.8421965

Directed or Undirected: Investigating Fuzzing Strategies in a Cl/CD Setup (Registered Report)

[10

(1

[12

[13

[14

[16

[17

[18

]

]

Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:
Stateful REST API Fuzzing. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). 748-758. https://doi.org/10.1109/ICSE.2019.00083
Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329-2344.
https://doi.org/10.1145/3133956.3134020

Oliver Chang. 2023. Taking the Next step: OSS-Fuzz in 2023. https://security.
googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html. Accessed:
2024-06-13.

Martin Fowler. 2024. Continuous Integration. https://www.martinfowler.com/
articles/continuousIntegration.html. Accessed: 2024-06-13.

Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based Directed Whitebox
Fuzzing. In 2009 IEEE 31st International Conference on Software Engineering. 474~
484. https://doi.org/10.1109/ICSE.2009.5070546

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3, Article 49
(Dec. 2020), 29 pages. https://doi.org/10.1145/3428334

Siim Karus and Harald Gall. 2011. A Study of Language Usage Evolution in Open
Source Software. In Proceedings of the 8th Working Conference on Mining Software
Repositories (Waikiki, Honolulu, HI, USA) (MSR ’11). Association for Computing
Machinery, New York, NY, USA, 13-22. https://doi.org/10.1145/1985441.1985447
Tae Eun Kim, Jaeseung Choi, Kihong Heo, and Sang Kil Cha. 2023. DAFL:
Directed Grey-box Fuzzing Guided by Data Dependency. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 4931-
4948. https://www.usenix.org/conference/usenixsecurity23/presentation/kim-
tae-eun

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123-2138. https://doi.org/10.
1145/3243734.3243804

Thijs Klooster, Fatih Turkmen, Gerben Broenink, Ruben Ten Hove, and Marcel
Bohme. 2023. Continuous Fuzzing: A Study of the Effectiveness and Scalability of
Fuzzing in CI/CD Pipelines. In 2023 IEEE/ACM International Workshop on Search-
Based and Fuzz Testing (SBFT). 25-32. https://doi.org/10.1109/SBFT59156.2023.
00015

Tomasz Kuchta, Hristina Palikareva, and Cristian Cadar. 2018. Shadow Symbolic
Execution for Testing Software Patches. ACM Trans. Softw. Eng. Methodol. 27, 3,
Article 10 (sep 2018), 32 pages. https://doi.org/10.1145/3208952

Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-coverage Testing of
Software Patches. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). Association for
Computing Machinery, New York, NY, USA, 235-245. https://doi.org/10.1145/
2491411.2491438

Maximiliano A Mascheroni and Emanuel Irrazabal. 2018. Continuous Testing and
Solutions for Testing Problems in Continuous Delivery: A Systematic Literature
Review. Computacion y Sistemas 22, 3 (2018), 1009-1038. https://doi.org/10.
13053/cys-22-3-2794

Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-Scale Continuous Testing. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software En-
gineering in Practice Track (ICSE-SEIP). 233-242. https://doi.org/10.1109/ICSE-
SEIP.2017.16

Barton P Miller, Lars Fredriksen, and Bryan So. 1990. An Empirical Study of the
Reliability of UNIX Utilities. Commun. ACM 33, 12 (1990), 32-44.

41

FUZZING ’24, September 16, 2024, Vienna, Austria

[19

Manishankar Mondal, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider.
2019. An Empirical Study on Bug Propagation through Code Cloning. Journal of
Systems and Software 158 (2019), 110407. https://doi.org/10.1016/].jss.2019.110407
Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and
Yasutaka Kamei. 2023. The Human Side of Fuzzing: Challenges Faced by Devel-
opers during Fuzzing Activities. ACM Trans. Softw. Eng. Methodol. 33, 1, Article
14 (nov 2023), 26 pages. https://doi.org/10.1145/3611668
Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints.
Proc. ACM Program. Lang. 3, OOPSLA, Article 174 (oct 2019), 29 pages. https:
//doi.org/10.1145/3360600
Van-Thuan Pham, Marcel Béhme, and Abhik Roychoudhury. 2020. AFLNET: A
Greybox Fuzzer for Network Protocols. In 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). 460-465. https://doi.org/
10.1109/ICST46399.2020.00062
Thorsten Rangnau, Remco v. Buijtenen, Frank Fransen, and Fatih Turkmen.
2020. Continuous Security Testing: A Case Study on Integrating Dynamic Se-
curity Testing Tools in CI/CD Pipelines. In 2020 IEEE 24th International En-
terprise Distributed Object Computing Conference (EDOC). 145-154. https:
//doi.org/10.1109/EDOC49727.2020.00026
D. Saff and M.D. Ernst. 2003. Reducing Wasted Development Time via Continuous
Testing. In 14th International Symposium on Software Reliability Engineering, 2003.
ISSRE 2003. 281-292. https://doi.org/10.1109/ISSRE.2003.1251050
David Saff and Michael D. Ernst. 2004. An Experimental Evaluation of Con-
tinuous Testing During Development. In Proceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis (Boston, Massachusetts,
USA) (ISSTA ’04). Association for Computing Machinery, New York, NY, USA,
76-85. https://doi.org/10.1145/1007512.1007523
Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
Integration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access 5 (2017), 3909-3943. https://doi.
org/10.1109/ACCESS.2017.2685629
Chaofan Shou, Shangyin Tan, and Koushik Sen. 2023. ItyFuzz: Snapshot-Based
Fuzzer for Smart Contract. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023).
Association for Computing Machinery, New York, NY, USA, 322-333. https:
//doi.org/10.1145/3597926.3598059
[28] spencerwuwu. 2021. Support Directed Fuzzing #62. https://github.com/HexHive/
magma/issues/62. Accessed: 2024-06-20.
[29] J.Christopher Westland. 2002. The Cost of Errors in Software Development:
Evidence from Industry. Journal of Systems and Software 62, 1 (2002), 1-9. https:
//doi.org/10.1016/S0164-1212(01)00130-3
Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, and Massimiliano Di Penta.
2021. CI/CD Pipelines Evolution and Restructuring: A Qualitative and Quantita-
tive Study. In 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 471-482. https://doi.org/10.1109/ICSME52107.2021.00048
Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, He Wang, Chunjie
Cao, Yuqing Zhang, Flavio Toffalini, and Mathias Payer. 2023. FISHFUZZ: Catch
Deeper Bugs by Throwing Larger Nets. In 32nd USENIX Security Symposium
(USENIX Security 23). USENIX Association, Anaheim, CA, 1343-1360. https:
//www.usenix.org/conference/usenixsecurity23/presentation/zheng
Xiaogang Zhu and Marcel Béhme. 2021. Regression Greybox Fuzzing. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing
Machinery, New York, NY, USA, 2169-2182. https://doi.org/10.1145/3460120.
3484596

[20

[21

~
&,

[23

[24

[25

[26

[27

[30

[31

[32

Received 2024-06-21; accepted 2024-07-22

https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1145/3133956.3134020
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1145/3428334
https://doi.org/10.1145/1985441.1985447
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-tae-eun
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-tae-eun
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1145/3208952
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.13053/cys-22-3-2794
https://doi.org/10.13053/cys-22-3-2794
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1016/j.jss.2019.110407
https://doi.org/10.1145/3611668
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/EDOC49727.2020.00026
https://doi.org/10.1109/ISSRE.2003.1251050
https://doi.org/10.1145/1007512.1007523
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1145/3597926.3598059
https://doi.org/10.1145/3597926.3598059
https://github.com/HexHive/magma/issues/62
https://github.com/HexHive/magma/issues/62
https://doi.org/10.1016/S0164-1212(01)00130-3
https://doi.org/10.1016/S0164-1212(01)00130-3
https://doi.org/10.1109/ICSME52107.2021.00048
https://www.usenix.org/conference/usenixsecurity23/presentation/zheng
https://www.usenix.org/conference/usenixsecurity23/presentation/zheng
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 CI/CD Testing
	2.2 Prior Work of Fuzzing in CI/CD
	2.3 Directed Fuzzing

	3 Experimental Design
	3.1 CI/CD Simulation
	3.2 Benchmarks
	3.3 Fuzzers and Fuzz Targets

	4 Implementation
	5 Preliminary Results
	5.1 Can fuzzers reach the inserted bugs?
	5.2 Can fuzzers trigger the inserted bugs?
	5.3 How easy it is to set up the fuzzers in CI/CD simulation?

	6 Plan for a Complete Evaluation
	7 Revision Requirements
	8 Related Work
	9 Conclusion
	References

