
CODAMOSA: Escaping Coverage Plateaus in Test
Generation with Pre-trained Large Language Models

Caroline Lemieux
University of British Columbia, Canada†

clemieux@cs.ubc.ca

Jeevana Priya Inala
Microsoft Research, USA
jinala@microsoft.com

Shuvendu K. Lahiri
Microsoft Research, USA

shuvendu.lahiri@microsoft.com

Siddhartha Sen
Microsoft Research, USA
sidsen@microsoft.com

Abstract—Search-based software testing (SBST) generates
high-coverage test cases for programs under test with a combi-
nation of test case generation and mutation. SBST’s performance
relies on there being a reasonable probability of generating
test cases that exercise the core logic of the program under
test. Given such test cases, SBST can then explore the space
around them to exercise various parts of the program. This paper
explores whether Large Language Models (LLMs) of code, such
as OpenAI’s Codex, can be used to help SBST’s exploration.
Our proposed algorithm, CODAMOSA, conducts SBST until its
coverage improvements stall, then asks Codex to provide example
test cases for under-covered functions. These examples help
SBST redirect its search to more useful areas of the search
space. On an evaluation over 486 benchmarks, CODAMOSA
achieves statistically significantly higher coverage on many more
benchmarks (173 and 279) than it reduces coverage on (10 and
4), compared to SBST and LLM-only baselines.

I. INTRODUCTION

The goal of automated test case generation is to generate
test cases covering all the different behaviors of the program
under test. Test cases that cover behaviors a developer did not
think about may help the developer find bugs or otherwise
improve the quality of their program.

One approach to automatically generate test cases is search-
based software testing (SBST) [1]–[5]. Most state-of-the-art
SBST tools build on some form of evolutionary algorithm. At
a high-level, these algorithms start by creating a set of random
test cases, repeatedly mutating these test cases, and keeping
those with higher fitness for further mutation. Often, higher
fitness relates to higher coverage of the program under test.

SBST works well when mutating a test case has a non-
negligible likelihood of increasing fitness. This is not the case
for the Python module in Fig. 1. The main function under
test, bump version, increments program version strings, e.g.
bumping ‘1.2.2’ to ‘1.2.3’. As shown in Fig. 1, an SBST
tool can generate test cases where bump version is called
on random strings like ‘a\!sUo˜AU’. From here, SBST has
difficulty making further testing progress because the proba-
bility of mutating ‘a\!sUo˜AU’ to a reasonable version string—
necessary to exercise any more of the code under test—is
nearly zero. Unfortunately, studies have found that fitness
plateaus like these—where mutated test cases are unlikely to
increase coverage—are quite common [6], [7].

†
Most implementation/evaluation work conducted at Microsoft Research.

One core problem leading to these plateaus is that SBST
has difficulty exercising the program under test (PUT) in an
expected manner [7]. For instance, in our running example,
bump version expects its first argument to be a string of a
particular format. Or, a program might expect a particular
sequence of function calls to correctly construct an object [8].
We hypothesize that if we provided SBST with test cases
exercising the PUT in an expected manner, then SBST’s search
could escape these plateaus. The difficulty is in how to produce
these expected test cases.

Recently, large language models (LLMs) applied to code—
such as Codex [9]—have shown impressive results in produc-
ing natural-looking code. In this paper, we investigate whether
LLMs can be selectively invoked to produce test cases that can
help SBST escape its coverage stalls.

Our proposed technique, CODAMOSA, starts SBST and
monitors its coverage progress. When CODAMOSA notices a
stall in coverage, it identifies callables in the PUT that have
low coverage. Then, it queries Codex to generate tests for
these callables. To build upon these generations, CODAMOSA
deserializes the raw character sequences generated by Codex
into SBST’s internal test case representation. This allows it to
leverage SBST’s mutation operations and fitness function to
mutate and evaluate the quality of the Codex-generated tests.

In building this workflow, there are some subtleties in when
and how to ask Codex for a test case. Deserializing test
cases presents a core technical challenge: to make the search
tractable, SBST restricts the set of statements that can be
present in a test case. Codex, on the other hand, generates
arbitrary Python code. Our deserialization procedure enables
tractable expansion of SBST’s search space: calls to new
functions or new syntactical constructs suggested by Codex
are integrated into test cases if they help increase coverage.

We build CODAMOSA for Python on top of the Pyn-
guin [10] test suite generation framework. We conduct a large-
scale evaluation of CODAMOSA on 486 Python modules.
We find that CODAMOSA achieves statistically significantly
higher coverage on many more benchmarks (173 and 279)
than it reduces coverage (10 and 4) on compared to our
SBST and LLM-only baselines. The average magnitude of
the coverage increase is also higher (10% and 9%) than
the average magnitude of decreases (−4% and −3%). In
case studies, we find that Codex’s ability to generate special
string primitives, call new functions, and introduce syntactical

1

Fig. 1: Example run of CODAMOSA on a module under
test. When search-based testing hits a coverage stall (1),
CODAMOSA queries Codex for a test case (2), and deserializes
this test (3) into a form that enables the search to progress (4).

constructs contribute the most to CODAMOSA’s improvements
over SBST. In summary, our contributions are as follows:

• We propose CODAMOSA, which integrates LLMs of code
with SBST. It includes techniques to integrate arbitrary
Python test cases into SBST, regardless of their source.

• We conduct a large-scale evaluation of CODAMOSA, its
design decisions, and baselines, across 486 benchmarks.

• We release our open-source implementation of CO-
DAMOSA, and data to help replicate the experiments in
this paper: https://github.com/microsoft/codamosa.

II. MOTIVATION

Consider the code fragment at the top of Fig. 1. It is based
off of the packages module of the flutils project [11].
The core function provided by this module is bump version,

which increases the version in a version string, e.g. from
‘1.2.2’ to ‘1.2.3’. The pos argument specifies the position at
which to increase the version, and the pre release argument
creates alpha or beta versions: bump version(‘1.2.2’, 1, ‘a’)

yields ‘1.3a0’. Our code fragment mostly highlights a helper
function, build version bump position, which handles the
integer value passed in the pos argument.

Suppose we want to automatically create a test suite for this
module. Most state-of-the-art tools for test suite generation
are search-based. These tools use meta-heuristic optimization
algorithms [12]–[14] to generate high-coverage test suites
for the module under test. State-of-the-art algorithms such
as MOSA [3] and MIO [5] are at their core evolutionary
algorithms. They produce test cases by (a) starting with a set
of randomly-generated test cases and (b) repeatedly mutating
these test cases, and keeping only the fittest test cases, as de-
fined by some—often code-coverage-related—fitness metric.
Section III-A provides more background on these algorithms.

Suppose we run the SBST algorithm MOSA on the module
under test in Fig. 1. Initially, MOSA will achieve some
coverage of this module. But soon, its coverage improvements
cease: even after repeated mutation iterations, none of the
mutated test cases it generates cover new code in the module.
We say that the algorithm has reached a coverage stall.

The reason for this stall is clear to any human analyst look-
ing at the test cases generated by MOSA. Fig. 1 shows two such
test cases, labeled (1). These test cases pass unexpected values
to the version argument of bump version: ‘a\t!sUo˜AU’ and
None. These values cause an exception to be raised immediately
upon invoking bump version, and so little code in the packages

module is exercised.
Our proposed technique, CODAMOSA, overcomes such

stalls as follows. CODAMOSA starts by running MOSA. Then,
when it reaches a coverage stall, it asks for a “hint”. Precisely,
it asks for a test case targeting an under-covered function in
the module under test. For instance, it may get the test case
labeled (2) in Fig. 1. Although the right-hand-side of this test
case’s first assert is not correct, it calls bump version on a valid
version string. CODAMOSA extracts the core functionality of
the test case into a mutatable test case format: (3) in Fig. 1. It
observes that this test case increases coverage of the module
under test, and adds it to its test case set.

However, this test case consists of normal invocations of
bump version, that do not exercise the subtlety of, say, the pos

argument. The test case neither exercises the code for handling
an out-of-bounds position (highlighted with a H in Fig. 1),
nor the code for handling negative positions (highlighted with
a 8 in Fig. 1).

Luckily, exploring different integer values for an argument
is one of the strengths of mutation-based algorithms like
MOSA, on which CODAMOSA is built. Thus, CODAMOSA
will generate many mutants from the deserialized test case,
labelled (4) in Fig. 1. Some, like test case mutant 0, may
have valid negative values for pos, and exercise the code
labeled 8. Others, like test case mutant n, may have out-
of-bounds values for pos, exercising the code labeled H.

2

Algorithm 1 Abstract SBST algorithm with archiving for test
generation (SBST-A).

Input: module to test, population size N, search time T
Output: a set of test cases exercising module

1: covPts←GETCOVERAGEPOINTS(module)
2: callables← GETCALLABLES(module)
3: testCases ← RANDOMTESTCASES(callables, N)
4: archive ← SMALLESTCOVER(∅ ∪ testCases, covPts)
5: while timeElapsed < T do
6: newTests ← MUTATE(testCases, callables, N)
7: archive←SMALLESTCOVER(archive∪newTests,covPts)
8: testCases← FITTEST(newTests ∪ testCases, covPts)
9: return archive

The key takeaway from this example is the following.
Providing the search with an example of expected use of the
module under test allows SBST to escape its coverage stall.

The problem, of course, is how to get such examples of
expected uses of module code. In order to do this, we need a
system that understands what code “should look like”. Con-
veniently, large language models for code such as Codex [9]
promise to do just this. Thus, CODAMOSA uses Codex to
generate test cases hints like (2) in Fig. 1.

The example in Fig. 1 is taken from a real example in
our evaluation on which CODAMOSA greatly outperforms our
baselines. Over 16 runs, MOSA achieved 18.4% average total
coverage of this module. CODAMOSA, in contrast, achieved
91.8% average total coverage, an absolute percentage-point
increase of 73.4% over MOSA. CODAMOSA also outperforms
a Codex-only baseline, which achieves only 64.5% average
total coverage on this module.

Section IV describes CODAMOSA in more detail. We first
provide some background on SBST and LLMs.

III. BACKGROUND

A. Search-Based Software Testing

The goal of test-suite generation is to generate a test suite—
that is, a set of test cases—that covers the diverse behaviors
of the program under test. A test case consists of a sequence
of statements, including call statements to the callables (func-
tions, methods, constructors) in the module under test. Search-
based software testing (SBST) uses meta-heuristic optimiza-
tion [12]–[14]—such as evolutionary algorithms or simulated
annealing—to generate test suites.

A large class of SBST tools use evolutionary or genetic
algorithms [1]–[5] in order to generate test suites. At their
core, these tools work by (a) randomly generating a set of
test cases to start from; and (b) repeatedly mutating the test
cases to increase coverage of the program under test. In this
paper, we build on SBST algorithms with an archive, such as
MOSA [3]. Algorithm 1 outlines the high-level view of such
algorithms: we refer to this generalized algorithm as SBST-A.

First, SBST-A collects a set of coverage points (lines and
branches) in the module under test (Line 1). Then, it collects
the callables—functions, constructors, and generators—from

the module under test (Line 2). These callables are split into
two groups. First, test objects: the public callables in the mod-
ule. Second, dependent callables, which are used to construct
or modify arguments to the test objects. Implementations may
collect these dependent callables by following type signatures
(in Java [15]) or available type hints (in Python [10]).

SBST-A then initializes the population, testCases, by gener-
ating N random test cases (Line 3). Each test case consists of
a sequence of calls to test objects, and any primitive statements
or calls to dependent callables necessary to generate arguments
for the test object calls. In addition to testCases, the population
mutated during the main search, SBST-A keeps track of an
archive (Line 4). The separation of these two sets allows SBST-
A to keep track of the test cases that most succinctly cover
the module under test (archive), but also keep those that are
found to be promising for future coverage (testCases). The
function SMALLESTCOVER (Line 4) returns the smallest test
cases from its first argument that together cover all coverage
points in covPts.

While time remains in the search, SBST-A mutates its test
case population (Line 6). If any mutated test case covers a
new coverage point, or does so with fewer statements than
before, SBST-A updates the archive (Line 7). Then, it updates
the population with the fittest of the original population and
the mutated test cases (Line 8). Finally, when the time budget
expires, SBST-A returns the test suite archive.

B. Large Language Models of Code

Large language models (LLMs) have achieved impressive
performance on natural language tasks, including text gener-
ation [16]–[18], conversation [19], and reasoning [20]. They
are trained in an auto-regressive manner, i.e. trained to predict
the next token given some prefix of text. This allows LLMs to
be trained on vast quantities of text available on the web, with
no need to label data. For instance, GPT-3 [16] was trained on
almost 700 GB of data collected from CommonCrawl [21].

Following the success of LLMs at natural language tasks,
there has been tremendous interest in applying LLMs to
code. This led to the development of several code genera-
tion models such as Codex [9], AlphaCode [22], Google’s
program synthesis model [23], PolyCoder [24], InCoder [25]
and CodeGen [26]. Codex is the largest state-of-the-art code
generation model publicly available for querying through an
API. It is built on top of GPT-3, with additional training on
code from 55 million GitHub repositories, totaling 160GB of
data. Codex is most proficient in Python, but it supports several
other languages including Go, JavaScript, and TypeScript.

We control LLM generations via prompts. A prompt is the
input text that is passed to the LLM at inference time. The
LLM generates text following the prompt until it generates
a predetermined stop word or exceeds its maximum word
limit. By carefully crafting prompts, i.e. prompt engineering,
researchers have applied Codex to a variety of new tasks—
solving coding competition and interview questions [9], [22],
code completion [27], code explanation [28], and code re-

3

Algorithm 2 CODAMOSA. Parts of the algorithm that are the
same as Algorithm 1 are greyed out.

Input: module to test, population size N, search time T ,
maximum stall length maxStallLen, model to query for
test cases, and number of times to query per iteration M .

Output: a set of test cases that maximizes the coverage of
module

1: covPts←GETCOVERAGEPOINTS(module)
2: callables← GETCALLABLES(module)
3: testCases ← RANDOMTESTCASES(callables, N)
4: archive ← SMALLESTCOVER(∅ ∪ testCases, covPts)
5: stallLen ← 0
6: while timeElapsed < T do
7: coverageBefore←COVERAGE(archive)
8: testCasesBefore← testCases
9: if stallLen > maxStallLen then

10: wasTargeted← True
11: newTests, fns ← TARGETEDGEN(archive, callables)
12: callables← callables ∪ fns ▷ expand the callables
13: mutatedTests ← MUTATE(newTests, callables, N)
14: newTests← newTests ∪ mutatedTests
15: stallLen← 0
16: else
17: wasTargeted← False
18: newTests ← MUTATE(testCases, callables, N)
19: archive←SMALLESTCOVER(archive∪newTests,covPts)
20: testCases← FITTEST(newTests ∪ testCases, covPts)
21: if wasTargeted and testCases = testCasesBefore then
22: maxStallLen← 2 ∗ maxStallLen ▷ back off
23: if COVERAGE(archive)= coverageBefore then
24: stallLen← stallLen + 1
25: else
26: stallLen← 0
27: return archive

pair [29], [30]—without having to retrain Codex. In this paper,
we use Codex to generate test cases via prompt engineering.

IV. TECHNIQUE

Recall the motivation from Section II. SBST has a tendency
to periodically reach coverage stalls; these stalls may be
overcome if we provide SBST with an example of an expected
test case. In CODAMOSA, we investigate whether LLMs can
effectively provide such examples.

A. High-Level Walkthrough

Algorithm 2 shows CODAMOSA’s high-level algorithm.
We have greyed out the statements identical to those in
Algorithm 1. In addition to module, population size N , and
search time T , CODAMOSA expects a maximum stall length
maxStallLen, LLM to query model, and number of model
queries per iteration M. CODAMOSA starts by initializing the
set of coverage points, the callables, the population, and the
archive as in Algorithm 1 (Lines 1-4). It also initializes the
coverage stall length to 0 (Line 5)

Algorithm 3 The TARGETEDGEN function.

Input: a set of test cases archive, a set of functions that can
be called callables. From Alg. 2: module to test, model to
query, and number of times to query per iteration M .

Output: a set of test cases generated by model to exercise
low-coverage test objects in callables, and any new func-
tion objects that were called in these test cases.

1: function TARGETEDGEN(archive, callables)
2: testFns← OBJECTSUNDERTEST(callables)
3: covPerFn← COMPUTECOVERAGE(archive, testFns)
4: newFns← ∅
5: newTests← ∅
6: for 1 ≤ i ≤M do
7: targetFn← SAMPLELOWERCOV(covPerFn, testFns)
8: prompt← GENERATEPROMPT(targetFn, module)
9: modelOutput← QUERY(model, prompt)

10: testCase, fns← PARSETOTESTCASE(modelOutput)
11: newFns← newFns ∪ fns
12: newTests← newTests ∪ {testCase}
13: return newTests, newFns

At the start of each mutation iteration, CODAMOSA keeps
track of the coverage achieved by the current archive (Line 7)
and keeps a copy of the current population (Line 8). If the cov-
erage stall length does not surpass maxStallLen, CODAMOSA
behaves just like SBST-A: creating a set of mutated test cases,
and updating the archive and population with these mutants
(Lines 18-20). If the coverage increases, the stall length is set
to zero (Line 26). If it does not increase, the coverage stall
length is incremented by one (Line 24).

CODAMOSA behaves differently when it notices the cov-
erage stall has reached the maximum length (Line 9). In this
iteration, rather than simply mutating the existing population,
CODAMOSA calls TARGETEDGEN (Sec. IV-B), which invokes
model to generate test cases targeting low-coverage test objects
(Line 11). The Codex-generated tests may cause CODAMOSA
to increase its search space (Line 12); Section IV-C discusses
this in detail. CODAMOSA applies one round of mutation
on these generated test cases (Line 14). The union of the
generated test cases and their mutants is then used to update
the archive and population, as in a regular SBST-A itera-
tion (Line 19-20). Finally, since Codex queries are time-
consuming, if the targeted generation step does not yield an
update in the population, CODAMOSA “backs off”, doubling
the maximum stall length (Line 22).

B. Targeted Generation

Algorithm 3 describes the TARGETEDGEN function. The
goal of this function is to generate M tests invoking callables
in callables that are not well-covered by the tests in archive.

First, TARGETEDGEN identifies the test objects in callables
and stores these in testFns (Line 2). As described in Sec-
tion III-A, test objects are all the public callables in module;
these form the backbone of test cases. The other callables
are dependent callables, necessary to generate arguments for

4

the test objects. Then, TARGETEDGEN computes the coverage
achieved by archive for each of the test objects in testFns
(Line 3). Each callable in testFns gets a score from 0 to 1,
where 1 means fully covered.

After this, TARGETEDGEN moves on to querying the model.
It samples a callable to target with probability inversely pro-
portional to the coverage of each callable (Line 7). That is, if
c∗ is a callable with coverage score cov(c∗), the probability of
sampling c∗ is 1−cov(c∗)∑

c∈testFns 1−cov(c) . Then, we generate a prompt
to target this particular callable (Line 8), query model with this
prompt (Line 9), and deserialize model’s output into a test case
(Line 10). Finally, TARGETEDGEN returns the deserialized
generated test cases (Line 13).

1) Prompt Generation: Let X be the callable being tar-
geted. The first part of our prompt is the source code of the
module under test. If the source code is longer than the LLM’s
maximum prompt length, we take as much of the source code
as possible, including the definition of the callable X . Then,
we add to the prompt a function header of the appropriate
form depending on whether X is a function (# Unit test for

function X\ndef test X():), method (# Unit test for method

X of class C\ndef test C X():), or constructor (# Unit test

for constructor of class X\ndef test X():).

C. Deserializing Generated Test Cases

In Line 10 of Algorithm 3, CODAMOSA deserializes a
Codex-generated test case into the search algorithm’s internal
representation. This representation simplifies specialized oper-
ations such as type-aware mutations or test case reduction.

CODAMOSA is built on the Pynguin framework for Python
test suite generation [10]. Pynguin’s implementation includes
a test case deserialization procedure, which we refer to as
Pynguin-deserialize. Its purpose is to deserialize test cases
generated by prior Pynguin runs, in order for a new run to
start from these test cases rather than random ones. Thus,
it cannot deserialize arbitrary Python code. To take maximal
advantage of Codex-generated code, we build an augmented
deserialization procedure: PARSETOTESTCASE.

1) Rewriting Codex Generations: Pynguin assumes test
cases are a sequence of assignment statements. The left-hand-
side of the assignment must be a single variable name and
the right-hand-side must be: (1) a primitive constant; (2) a list
or dictionary where all elements are variables names, or (3) a
call where all arguments are variables names.

Thus, PARSETOTESTCASE first transforms the arbitrary
Python code generated by Codex into a series of assignment
statements. In particular, (1) we store values of standalone
expression statement in a variable, and (2) we remove nested
subexpressions as allowed by variable scoping rules, so that
all right-hand-side subexpressions are variable references. For
instance, z = foo(bar(2)) becomes 3 statements: int 0 = 2,
var 0 = bar(int 0) and z = foo(var 0).

2) Partial Parsing: Pynguin-deserialize discards any test
cases where one statement could not be parsed. For instance,
suppose we give Pynguin-deserialize the following test case:

1. x = 3
2. y = UNKNOWN_FUNCTION(x)
3. z = foo(y)
4. w = bar(x)

When it fails to parse Line 2, Pynguin-deserialize discards
the entire testcase. In contrast, our approach visits every as-
signment statement and tries to parse it. It discards unparseable
statements (e.g., Line 2) and those that depend on them (e.g.,
Line 3), but turns the parseable ones into a testcase, e.g:

x = 3
w = bar(x)

Additionally, PARSETOTESTCASE visits assignment state-
ments within code blocks of complex statements (e.g. if, with,
class), but discards the complex statements themselves. Thus,
the deserialized test cases consist of only straight-line code.

3) Callables Expansion: Pynguin-deserialize only parses
call statements that invoke a callable in callables (Line 2
in Algorithm 1). Recall from Section III-A that callables
includes only test objects and dependent callables. In contrast,
CODAMOSA keeps track of all callables that are reachable
via import statements in the module under test, in a backup
callables set. Then, if Codex outputs a call that cannot be
resolved, CODAMOSA checks if the callable is in its backup
set. If it is, its deserializer parses the call and promotes the
callable to callables (Line 12 in Algorithm 2). These promoted
callables can later be used in mutations.

Concretely, this means that if Codex notices a commonly
imported module, (e.g., import ast), and calls a real function
from this module (e.g. ast.parse(str 0)), this call will be
parsed and taken up into the test case. However, if Codex
invents a new function call not defined in an imported module,
(e.g. ast.foo(str 0)), the deserializer discards the statement.
Expanding the space of callables only if they are suggested
by Codex prevents the huge explosion of the search space
that would come with considering all the backup callables.

4) Uninterpreted Statements: Recall that Pynguin-
deserialize supports a limited number of expressions on
the right-hand-side of assignment statements. In initial
experiments, we noticed that sometimes right-hand-sides
with different syntactical constructs, e.g. var 0 = lambda

x : x + int 0, were crucial to increasing coverage. We
added a new type of statement to Pynguin’s test case model,
uninterpreted statements, to integrate these new syntactical
constructs into test cases. These statements take the form
lhs = g(vr0, . . . , vrn), where some g operates over variable
references vr0, . . . , vrn. We model g as a modified Python
AST, which keeps track of any use of a variable previously
defined in the test case. For instance:

5

Tracking variable references vr0, . . . , vrn allows us to use
Pynguin’s test case pruning and analysis operations out-of-the-
box. We implement a single mutation operator for these state-
ments: replace an existing variable reference with another one.
Unlike the mutation operators for other Pynguin statements,
this mutation is unaware of g’s semantics or type constraints—
i.e., g is uninterpreted. Thus, if a test case defines variables
int 0 and str 0, CODAMOSA may mutate a=b[int 0] →
a=b[str 0]. At test case execution time, g is turned back into
Python code, and the new syntax will be executed.

This novel representation allow us to incorporate a variety
of syntactical constructs into SBST without having to write
custom generators and mutators for each construct, which
is error-prone. For instance, while building CODAMOSA, we
noticed that Pynguin-deserialize did not handle calls to builtins
such as list correctly [31]: it deserialized these to list state-
ments, which have different semantics (list("ab")!=["ab"]).
Fixing this is non-trivial, as builtin functions are not in the
set callables. Thus, they cannot be modeled with Pynguin’s
existing call statements. In CODAMOSA, we easily fixed this
issue by modeling builtin calls as uninterpreted statements.

V. EVALUATION

Our evaluation investigates the following questions.
RQ1. How does CODAMOSA compare to our baselines on

our benchmark set? (Section V-B)
RQ2. How do our design decisions (uninterpreted state-

ments, Codex hyper-parameters, low-coverage targeting,
prompting) affect test effectiveness? (Section V-C)

RQ3. Why, qualitatively, does CODAMOSA achieve different
coverage results than MOSA? (Section V-D)

RQ4. Are Codex generations copied from out-of-prompt files
in the module under test’s codebase? (Section V-E)

A. Experimental Setup

The version of CODAMOSA used in all our experiments
was built on top of Pynguin 0.19.0. We built CODAMOSA
specifically on top of the MOSA implementation in Pynguin,
though it can be easily ported to algorithms that share the
structure of Algorithm 1. We add 3.7k lines and modify around
700 lines of main functionality code for our implementation.
We also add 1.8k lines of tests of our implementation.

1) Baselines: Our first baseline is Pynguin’s implemen-
tation of MOSA. The other obvious baseline would have
been DynaMOSA [3]: unlike MOSA, it prioritizes only those
coverage objectives that are not dominated by existing unmet
objectives. For instance, if a function entry is not yet covered,
the branch statements in that function are not prioritized as
coverage objectives: first, the function entry must be covered.
DynaMOSA was found to be more effective than MOSA in
the original work [3]. We use MOSA rather than DynaMOSA
because in Pynguin 0.19.0, only MOSA supported both line
and branch coverage. We want both measures because Python
code, when called with invalid arguments, throws many ex-
ceptions. In the presence of exceptions, branch coverage does
not supersede line coverage.

Our second baseline, CODEXONLY, uses only Codex to
generate test cases. CODEXONLY spends its entire search
budget calling TARGETEDGEN for randomly selected test ob-
jects, and calling PARSETOTESTCASE on the Codex-generated
tests to get Pynguin-format test cases. This enables us to see
whether the search in CODAMOSA confers any advantage
over using Codex alone. Note that since the test cases are
deserialized back into the Pynguin format, this baseline may
have lower coverage than running the raw Codex output (see
“Unparseable Constructs” in Section V-D2).

2) Benchmark Collection: We identified 35 projects from
which to source modules, from the evaluation of Pynguin [32]
and BugsInPy [33]. We use pipreqs [34] to automatically
identify each project’s dependencies, and Python’s builtin
setuptools.find packages utility to automatically identify
modules in each project. For each of these modules we ran a
preliminary test: two runs of MOSA for one minute each. We
removed modules that failed to produce results, and those on
which 100% coverage was achieved within a minute. We also
down-sampled the number of modules that shared the same
parent module. This left us with 486 benchmark modules over
27 projects; Table I provides the details.

3) Algorithm Parameters: During implementation, after
observing runs of CODAMOSA on a small test benchmark, we
chose a maximum stall length of 25 iterations, and a maximum
number of queries to Codex of 10. We used these values
for evaluation to prevent overfitting to our benchmarks. For
population size, we use the Pynguin default of 50.

4) Experimental Parameters: We ran each technique on
each test module 16 times, for 10 minutes each time (T = 10
minutes). We chose 10 minutes as a search time as it is the
time used in the evaluation of Pynguin [32], and is longer
than the 5-8 minute search times used in the evaluation of
MOSA [3]. For CODAMOSA and its variants, the 10-minute
time includes the time to query Codex via OpenAI’s API.

B. Comparison to Baselines

We ran MOSA, CODEXONLY, and CODAMOSA on our 486
benchmarks. Following Arcuri and Briand’s [35] guidelines,
we use a Mann-Whitney U-Test to compare the significance
of coverage differences between techniques, at p = 0.05.

Fig. 2 shows the average coverage difference through time
between CODAMOSA and the baselines. Each line represents a
separate benchmark module. The differences are the absolute
percentage point differences in line + branch coverage. For
instance, if CODAMOSA has 80% coverage and the baseline
has 20% coverage, this is 60% on the y-axis. We highlight the
average difference when CODAMOSA’s coverage at that time
was significantly higher or lower than the baseline’s.

Fig. 2a shows the average difference in coverage through
time compared to MOSA. Since CODAMOSA waits until a
coverage stall to start invoking Codex, we do not see an
immediate bump in coverage. Contrast this with Fig. 2b, where
CODAMOSA starts with higher coverage than CODEXONLY.
This reflects the fact that it is initially faster to generate test
cases using random test generation than by querying Codex.

6

TABLE I: Characteristics of benchmark modules used in the evaluation.
Src is the project source: “Pyn” for Pynguin, “BIP” for BugsInPy. # Mod.
is the number of benchmark modules from the project. Min, mean, and max
of Size (LoC), Test Objects is over benchmark modules in the project.

Project Revision Src # Mod. Size (LoC) Test Objects

min mean max min mean max

apimd f32841b Pyn 2 111 291 471 3 16 29
codetiming a7ad85a Pyn 1 45 45 45 12 12 12
dataclasses-json 3dc59e0 Pyn 4 55 194 286 3 9 17
docstring parser a5dc2cd Pyn 5 14 120 198 1 6 15
flutes 49647e4 Pyn 3 13 99 216 1 9 20
flutils df0f84e Pyn 9 21 127 263 1 4 9
httpie bb36897 Pyn 19 9 129 393 2 7 16
isort a6222a8 Pyn 2 109 110 111 13 14 15
mimesis 310092c Pyn 18 25 75 188 1 10 30
py-backwards 8be3c44 Pyn 19 8 50 189 1 3 16
pyMonet f132cfa Pyn 10 23 51 75 3 13 27
pypara 7d705a5 Pyn 6 7 195 743 1 41 183
semantic-release 3689157 Pyn 6 21 84 254 1 8 28
string-utils d903db3 Pyn 3 55 157 230 4 16 27
pytutils 9813bb3 Pyn 12 4 56 243 1 5 14
sanic 93a0246 Pyn 11 19 139 505 2 8 21
sty f99e918 Pyn 2 19 56 94 2 8 13
thonny fb389f4 Pyn 3 24 217 521 3 11 24
typesystem 6a9590c Pyn 10 32 197 603 1 14 37
black 2354126 Both 6 52 271 555 3 19 53
ansible f00f123 BIP 237 8 132 1110 1 7 73
cookiecutter 1c0b5b1 BIP 5 18 60 111 1 4 9
PySnooper 31bfc63 BIP 4 68 144 336 2 9 14
thef**k 0949d2e BIP 32 6 36 156 1 3 18
tornado 2047e7a BIP 13 100 288 600 4 19 33
tqdm 18d7aa4 BIP 9 16 75 202 1 5 11
youtube-dl b224cf3 BIP 35 24 203 873 1 5 32

(a) Average absolute percentage point difference in cov-
erage between CODAMOSA and MOSA.

(b) Average absolute percentage point difference in cov-
erage between CODAMOSA and CodexOnly.

Fig. 2: Per-benchmark difference in average cover-
age through time. Times where coverage is signif-
icantly higher for one technique are highlighted as
indicated in the legend.

We see that the increases compared to MOSA get larger over
time (repeated injections of Codex test cases give coverage
boosts), while those over CODEXONLY decrease over time
(mutating test cases gives a fixed boost over Codex test cases).

Figs. 3a and 3b summarize the end-of-search-time average
coverage achieved by CODAMOSA (on the y-axis) and the
baselines (on the x-axis). The circles along the x = y
line on these figures highlight that on many benchmarks,
CODAMOSA’s average coverage does not differ from the
baselines’. Looking at the crosses above the x = y line, we
see that CODAMOSA achieves a higher magnitude of coverage
increases over MOSA (Fig. 3a) than CODEXONLY (Fig. 3b).
This is consistent with the flattening in Fig. 2b.

A question which emerges from these results is whether
the synergy between SBST and Codex demonstrated in Fig. 1
exists beyond that example, or whether CODAMOSA returning
the union of MOSA and CODEXONLY test suites.

To evaluate this, we re-ran the generated test suites through a
third-party coverage tool, coverage.py [36]. We created Union
test suites by taking the union of test cases generated by the
ith MOSA run and those generated by the ith CODEXONLY
run. This is a pessimistic comparison for CODAMOSA, as it
gives Union 2× the search time allotted to CODAMOSA.

We were able to successfully replay the CODAMOSA
and Union testcases through coverage.py for 429 of our
benchmarks.1 Of those benchmarks, CODAMOSA’s coverage

1The reasons for replay failures were often having to forcibly timeout test
cases, especially for benchmarks from youtube dl.extractor.

was significantly better than Union coverage on 72 bench-
marks, not significantly different on 314 benchmarks, and
significantly worse on 43 benchmarks. The fact that CO-
DAMOSA performs significantly better than Union on 17%
of these benchmarks, and matches its performance on 73%
of benchmarks—despite having only half the search time of
Union—suggests the meaningful combination of SBST and
LLMs seen in our motivating example is not a one-off.

Further, these coverage increases do not seem to come at
the cost of test suite bloat. On average over all benchmarks,
CODAMOSA created test suites containing 11 tests, while
MOSA’s contained 10 tests. The difference in test suite size
appears to correlate to coverage differences. On those bench-
marks where CODAMOSA had significantly higher coverage
than MOSA, its average test suite size was 18, compared to
MOSA’s 15. Meanwhile, on the benchmarks where MOSA
had significantly higher coverage, MOSA’s average test suite
size was 18 compared to CODAMOSA’s 17. CODEXONLY’s
test suites are smaller, containing on average 7 tests. But, as
discussed previously, they achieve consistently lower coverage.

Takeaway. CODAMOSA achieves significantly higher cov-
erage on many more of our benchmarks (173 vs MOSA, 279
vs CODEXONLY) than it reduces coverage on (10 vs MOSA,
4 vs CODEXONLY). On 17% of benchmarks, CODAMOSA
outperformed the union of CODEXONLY and MOSA, even
when allocated only half the search time. CODAMOSA’s tests
suites are not much larger than MOSA’s.

7

(a) Comparison to MOSA baseline. CO-
DAMOSA has significantly higher coverage
on 173 benchmarks; lower on 10.

(b) Comparison to CODEXONLY baseline.
CODAMOSA has significantly higher cover-
age on 279 benchmarks; lower on 4.

(c) Effect of uninterpreted statements. Using
them, CODAMOSA has significantly higher
coverage on 57 benchmarks; lower on 8.

(d) Effect of temperature. Default temp. 0.8
achieves significantly higher coverage than
temp. 0.2 on 113 benchmarks; lower on 9.

(e) Targeting low-coverage functions has sig-
nificantly higher coverage than targeting ran-
dom ones on 50 benchmarks; lower on 14.

(f) Default CODAMOSA has significantly
higher coverage than test-case-prompted ver-
sion on 49 benchmarks; lower on 24.

Fig. 3: Average coverage achieved by CODAMOSA vs. baselines at the end of search time. Modules where CODAMOSA gets
significantly (p < 0.05) higher coverage are marked +; those where it gets significantly lower coverage are marked ×.

C. Effects of Design Decisions

In building CODAMOSA, we made several design decisions.
We evaluate the effect of each of these in detail.

1) Uninterpreted Statements: CODAMOSA’s uninterpreted
statements (ref. Section IV-C4) allow it to produce assignment
statements with arbitrary right-hand-side expressions.

We compare the performance of CODAMOSA to a ver-
sion of CODAMOSA with uninterpreted statements disabled
(CODAMOSA-NOUNINTERP). Fig. 3c shows the average cov-
erage achieved per benchmark for CODAMOSA on the y-
axis, compared to CODAMOSA-NOUNINTERP on the x-axis.
Overall, the use of uninterpreted statements results in signif-
icant coverage increases on 57 benchmarks, and significant
coverage decreases on 8 benchmarks. As we will see in
Section V-D1, uninterpreted statements can exercise function
behaviors that can only be exercised by complex constructs,
e.g., iteration. However, uninterpreted statements may also
lead to the inclusion of useless statements in test cases. This
makes it harder for the genetic algorithm to make progress via
mutation, thereby reducing its achieved coverage.

Takeaway. Uninterpreted statements yield large coverage
increases on a non-negligible fraction of benchmarks—those
whose behaviors can only be exercised via certain program
constructs. But on most benchmarks, the same improvements
over MOSA can be achieved without them.

2) Temperature: Codex, like other LLMs, learns to generate
code by learning a probability distribution over next tokens,
given a prefix. There are several strategies for generating
code from these probability distributions. We use temperature,
which controls the greediness of sampling. With a temperature
of 0, Codex always returns the most likely next token, while
with a temperature of 1, it returns a next token sampled
according to the learned probability distribution.

By default, we use temperature 0.8 to sample Codex. Fig. 3d
shows a comparison between the coverage achieved with this
default (on the y-axis), and CODAMOSA with temperature
0.2 (on the x-axis). CODAMOSA had significantly higher
coverage than CODAMOSA-TEMP-0.2 on 113 benchmarks,
and significantly lower coverage on 9 benchmarks.

A lower temperature means Codex is more likely to sam-
ple the most expected test case given a particular prompt.
However, it also results in less variety. Thus, if Codex’s most
expected test cases are not useful to CODAMOSA, repeated
queries that return similar expected test cases will not increase
coverage. A higher temperature may require more queries to
get the most expected test case, but is more robust in scenarios
where this most expected test case is not useful.

Takeaway. Of all our evaluated design decisions, sampling
Codex with a higher temperature has the most consistently
positive effect on achieved coverage.

8

3) Targeting Low-Coverage Functions: Recall that CO-
DAMOSA prompts Codex to generate tests for lower-coverage
test objects. We evaluate the utility of this sampling by
comparing to CODAMOSA-RANDOM, which prompts Codex
with a randomly-selected test object instead.

Fig. 3e shows CODAMOSA’s average coverage on the y-
axis, and CODAMOSA-RANDOM’s on the x-axis. On 50
benchmarks, CODAMOSA has significantly higher coverage
than CODAMOSA-RANDOM, but CODAMOSA-RANDOM has
significantly higher coverage on 14 benchmarks. Further,
compared to the use of uninterpreted statements or high
temperature, targeting low-coverage callables does not yield
large magnitudes of coverage increases: in Fig. 3e all but three
points above the x = y line lie just above the line.

We expect CODAMOSA-RANDOM to behave like CO-
DAMOSA when low-coverage prompting degrades to ran-
dom prompting. For instance, when there are very few test
objects, or when all test objects are equally covered. Fur-
ther, CODAMOSA-RANDOM could perform better than CO-
DAMOSA if a low-coverage function’s coverage cannot be
increased (e.g., “Unparseable Constructs” in Section V-D2).

Takeaway. Targeting low-coverage functions gets consistent,
but low-magnitude, coverage increases over targeting random
functions. The contribution of low-coverage targeting to
CODAMOSA’s performance is less than that of uninterpreted
statements and high temperature sampling.

4) Prompting: The prompts CODAMOSA sends to Codex
consist only of the source code under test and a test function
header. We observed in preliminary experiments that some-
times Codex repeatedly outputs code that is too far from
Pynguin’s test case format to be of use to CODAMOSA. For
instance, Codex sometimes generates test cases that are mainly
Python testing framework boilerplate. A natural question is
whether prompting Codex with an example of a well-formatted
test case could improve these results.

In CODAMOSA-TESTCASEPROMPT, we add an example
of an already-generated test case in the prompts to Codex.
We choose the smallest non-empty test case in the archive,
because we found that Codex imitates the Pynguin format
too much when given a longer test. On 49 benchmarks, CO-
DAMOSA had significantly higher coverage than CODAMOSA-
TESTCASEPROMPT. CODAMOSA had significantly lower
coverage on 24 benchmarks. Fig. 3f shows that the coverage
differences on those 24 benchmarks are generally of larger
magnitude. This includes a benchmark on which CODAMOSA-
TESTCASEPROMPT outperforms MOSA while CODAMOSA
performs worse than MOSA (see Section V-D2).

Takeaway. More complex prompting yielded better results in
some cases, but was less consistent than our simple prompt-
ing. Further prompt engineering could improve results.

D. Case Studies

In this section, we analyze why MOSA and CODAMOSA’s
results differ, on the benchmarks where they differ the most.

1) Reasons for Coverage Improvement: Recall that CO-
DAMOSA achieved significantly higher coverage than MOSA
on 173 benchmarks, too many to analyze manually. Thus, we
analyze the 20 benchmarks on which CODAMOSA had the
largest average coverage increases over MOSA (from 24.2%
to 73.4% absolute percentage points).

Special strings. On 15 of the 20 benchmarks, string-valued
data was key to the observed increases. These “special strings”
range from single argument values (as in our motivating
example in Fig. 1), to longer text being parsed (json and
docstring), to special-case dictionary keys. While Pynguin can
extract constant strings from the source code, Codex-generated
strings of particular formats were not explicitly present in the
module under test. Further, Codex-generated test cases seem
to be more likely to put strings in the right place, while MOSA
needs to explore which strings go to which arguments.

Backup callables. On 7 of the 20 benchmarks, CODAMOSA
was able to correctly “set up” the target functions by invoking
backup callables. Recall that MOSA only considers test objects
and dependent callables. This sometimes prevents MOSA from
setting up tests correctly, notably when type hints are missing.
Codex could call backup callables that were important to set
up: CODAMOSA integrated these into tests with its callable
expansion. A 2019 study [37] found that only 2.6k of 70.8k
collected Python repositories had any type annotations, so the
ability to support code without type hints is significant.

Uninterpreted statements. On 5 of the 20 benchmarks, un-
interpreted statements increased coverage. Three benchmarks
had yield generators, which must be exercised via iteration.
On those, Codex produced calls to list and next, or list
comprehensions. In another case, comparison operators (e.g.,
<=) were necessary to exercise methods. MOSA is unable to
generate these syntactical constructs on its own. Interestingly,
on some benchmarks, a large number (e.g., 57.3%) of accepted
Codex-generated tests had uninterpreted statements, but CO-
DAMOSA performed just as well without them. In such cases,
it has added “useless” uninterpreted statements into tests.

2) Reasons for Coverage Decreases: CODAMOSA suffered
significant coverage decreases compared to MOSA (from
−0.2% to −15.9%) on 10 benchmarks; we analyze them all.
The core reason for coverage decreases is wasted exploration
time. On average over all benchmarks, CODAMOSA issues 60
queries to Codex and spends 413 seconds waiting for these
queries. This rises to 480 seconds on the worst-performing
benchmarks. If we could reduce Codex querying time, CO-
DAMOSA might perform better. For instance, if we reduced
the query time on the worse-performing benchmark from 494s
to 49s, CODAMOSA would get 62.6% coverage in the same
time that MOSA gets 43.5% coverage (155s).

Wrong signature. For CODAMOSA’s worst benchmark,
the constructor of the main class is implicitly defined via
inheritance, and requires an argument in order to run without
error. Codex usually failed to correctly call this constructor.
Another benchmark had a similar issue, where Codex rarely
filled optional arguments for one of the test callables.

Unparseable constructs. On average over all runs and

9

Fig. 4: Cumulative percent of Codex-generated test cases with
maximum similarity less than what is designated on x-axis.
Max is over all out-of-prompt test cases in the repository.

benchmarks, CODAMOSA parses 59.3% (min. 10.9% and
max. 98.7%) of Codex-generated statements. Usually, these
unparsed statements are not key to coverage increases, but
on two of the worst-performing benchmarks, they would have
been. On sanic.cookies, Codex generated many expressions
of the form cookies[key] = value. On flutils.objutils,
many Codex-generated tests included in-test class definitions.

Token limitations. We cut off Codex completions at 200
tokens—this helped reduce query time and seems like a
reasonable length for a test case. However, on one benchmark,
Codex spends all its budget on import statements and setup
code, not managing to call the target function before the cutoff.

E. Similarity of Codex Generations to Out-of-Prompt Code

As mentioned in Section III-B, Codex was trained on a large
corpus of code sourced from Github. As we do not have access
to Codex’s training set, we cannot confirm whether the code in
our benchmark modules is part of this set. A natural question
is whether Codex is overfitted to our benchmarks. To evaluate
this, we compare the Codex-generated tests for each module
to test functions present in the module’s source repository but
not in the module’s definition file. These test functions are not
in the prompt CODAMOSA sends to Codex, so we should not
expect Codex to generate them.

Metrics for code plagiarism detection [38], which erase
function names and primitive values to focus on code structure,
did not suitably capture the notion of test case similarity. For
instance, copydetect [39] would output that ast.parse(‘‘x’’)

is highly similar to collections.Counter(‘‘abb’’).
Edit distance [40] gives a more intuitive measure of simi-

larity. E.g., the Codex-generated test for flutes.iterator:

assert list(scanl(operator.add, [1,2,3,4], 0)) == [0,1,3,6,10]
assert list(scanl(lambda acc, x: x + acc, ['a', 'b', 'c', 'd']))

== ['a', 'ba', 'cba', 'dcba']}

has low normalized edit distance (0.287) to a test from
elsewhere in the flutes project:

check_iterator(flutes.scanl(operator.add, [1,2,3,4], 0), [0,1,3,6,10])}
check_iterator(flutes.scanl(lambda s, x: x + s, ['a', 'b', 'c', 'd']),

['a','ba', 'cba', 'dcba'])}

Thus, we define maximum similarity as follows. For a
Codex-generated test case t∗ for module m in project P , and
TP , the set of test functions defined in P outside of m, the
maximum similarity is maxtp∈TP

(
1− dist(t∗,tp)

max(len(t∗),len(tp))

)
.

We use editdistance [41] to calculate dist .
Fig. 4 shows the cumulative percent of Codex-generated

test cases, per project, with maximum similarity less than the
x-axis threshold. We see that the majority of generated test
cases have similarity ≤ 0.4. For some projects, no testcases are
remotely similar (apimd, sty, thonny), while for others (e.g.,
flutes, mentioned above) there is a long tail of test cases
with higher similarity. The vertical line segments on the far
right of the figure indicate some exactly-copied test cases (e.g.
tornado): but 99.1% of these are simply the statement pass.

One of our test projects, flutils, is hosted on GitLab rather
than GitHub, so is unlikely to be in Codex’s training set. This
allows us to evaluate how CODAMOSA works on “new” code.
Of the 9 flutils modules we evaluated, CODAMOSA had
higher coverage than MOSA on 7 (p-value = 8 × 10−3 to
2× 10−8), lower coverage on 1 (p-value = 4× 10−3), and no
coverage difference on 1 module (p-value = 0.51). While it
is a small sample size, this 7/1/1 split compares favorably to
the 166/9/296 split seen over the rest of our benchmarks.

Takeaway. Most Codex-generated tests are not very similar
to out-of-prompt test cases. On benchmarks likely outside of
Codex’s training set, CODAMOSA performed well.

VI. THREATS TO VALIDITY

Internal: While we have made a best-effort attempt to
make sure that test cases generated by Codex are deserialized
correctly, it is possible that there are bugs remaining and that
more code generated by Codex could be parsed.

External: While CODAMOSA had coverage increases
over a large number of our benchmarks, these results may
not hold for any arbitrary Python module. As seen in the
evaluation, for many benchmarks, there was no significant cov-
erage differences between our baselines and CODAMOSA. We
automated our benchmark identification and filtering process
in order to reduce the effect of bias in benchmark selection.

Construct: We use coverage to judge the goodness of test
cases. There is debate on the relation between coverage and
bug finding ability. A study from the fuzz testing space finds
that although coverage and bug-finding ability are correlated,
they do not agree on the ranking of different testers [42].
However, an industrial study of SBST [43] found it had dif-
ficulty finding bugs that required the construction of complex
objects and generation of specific primitives. CODAMOSA
outperformed MOSA on these points in our case studies.

VII. DISCUSSION

Contribution of Large Language Model: While the use
of LLMs is central to our presentation of CODAMOSA, LLMs
are not the solution to every problem in test case generation.
In integrating LLMs into SBST, we faced challenges, and the
fixes to these challenges may improve SBST more broadly.

10

Uninterpreted statements, for instance, could improve the use
of human-written tests as seeds in SBST.

More Generic Representation of Test Cases: While un-
interpreted statements in CODAMOSA conferred advantages
on a number of benchmarks, we observed during our case
studies that these statements sometimes cluttered test cases.
A more generic representation of test cases—for instance, an
augmented AST—could better capture the LLM output, but
may also make the search less effective.

Test oracles: In order to reveal bugs, each test case must
also contain a test oracle. A test oracle is a (set of) assertion(s)
that should pass when the behavior of the module under test is
correct, and fail otherwise. In this paper, we do not consider
the test oracle generation problem. Given a test suite generated
by CODAMOSA, different approaches for generating oracles
can then be applied to each test case, including regression
oracles [44], mutation-testing-based oracles [1], [2], and deep-
learning-based approaches [45]–[48]. Because CODAMOSA
is built on top of Pynguin, it inherits Pynguin’s support for
regression or mutation-testing-based oracle generation [49].

Data availability: Our source code is available at: https:
//github.com/microsoft/codamosa. The repository includes a
replication folder containing: (1) a docker container to clone
projects and filter modules as described Section V-A2; (2)
a docker container to run CODAMOSA; (3) data from our
similarity analysis; (4) scripts to generate the plots in this
paper. It also contains information on how to access our raw
evaluation data, notably the Codex-generated test cases that
can be used to replay CODAMOSA runs.

VIII. RELATED WORK

ATHENATEST [50] is a deep learning approach for generat-
ing test cases. They train a transformer to generate tests from
a large corpus of focal methods and test cases. In contrast, we
use an LLM as an opaque black-box to generate tests without
training, and incorporate these tests into a search algorithm.
Developers liked ATHENATEST tests better than EvoSuite
tests. As CODAMOSA imports test cases into Pynguin’s
format, its tests lose some readability. TICODER [51] also
mutates LLM-generated tests, but with the goal of formalizing
natural language intent. This work is complementary to ours:
CODAMOSA does not need natural language intent to create
tests, but requires the code under test to be fully implemented.

EvoSuite [1], [2] popularized the use of evolutionary algo-
rithms for test suite generation. It starts from a random test
suite, then repeatedly mutates it, saving mutated test suites that
have higher coverage than the original. Mutations at the test
suite level include mutating the individual statements in a test
case, adding or removing entire test cases, or crossing over test
cases or suites. The EvoSuite platform [15] now supports mul-
tiple search algorithms for test suite generation. These include
generic multi-objective search algorithms like SPEA2 [52] and
NSGA-II [53], as well as algorithms tuned specifically for
test case generation, such as MOSA [3], DynaMOSA [3], and
MIO [4], [5]. All of these algorithms include phases where
test cases are randomly generated. MIO, for instance, directly

trades off from an exploring phase where it mostly generates
random test cases, to an exploiting phase where it mostly
mutates promising test cases. An LLM-based hinting strategy
in the style of CODAMOSA could be incorporated into these
algorithms at these random test case generation points.

A study by Rojas et al. [54] studying the effects of seeding
EvoSuite supports this idea. They find that including existing
hand-written test cases in EvoSuite’s original population of
test cases increases coverage on 37% of their benchmarks.
This finding is consistent with the results of this paper.

Several works aim to improve the performance of SBST
without using LLMs. Galeotti et. al [55] use Dynamic
Symbolic Execution to mutate test cases in which primitive
values affect fitness. Lin et. al [56] propose a richer method
to calculate branch distance for boolean branch conditions.
EvoObj [8] uses static analysis of a target branch condition
to build an object construction graph, which is then used to
create better seeds for EvoSuite. All these improvements are
complementary to CODAMOSA’s hints-based strategy.

We believe CODAMOSA-style hinting can be applied to
other automated test generation approaches. Randoop [44] is a
technique for feedback-directed random test case generation: it
generates test sequences by adding a new call to previously-
generated function call sequences that run without throwing
exceptions. TestMiner [57] extracts string literals from human
tests suites to use as string constants in Randoop. When special
strings are present in the test codebase, this technique could
confer some of CODAMOSA’s advantages. We could also add
CODAMOSA-style test case hinting when growing sequences
no longer increases coverage, or prompt Codex to extend
sequences directly. Sapienz [58] uses reverse-engineering to
extract strings in order to create more human-like interactions
in Android tests; LLMs have the potential to create more
generalized human-like interaction strings.

Bareiß et al. [59] compare the performance of Randoop to
a Codex-only approach. To generate tests, they query Codex
with a prompt containing one example of a method-test pair,
then the body of the method to be tested. On an evaluation
over 18 Java methods, they find this approach outperforms
Randoop in terms of code coverage. But testing is not the
only code-related application domain for LLMs. Bareiß et
al. [59] also evaluate the use of Codex to generate code
mutants and test oracles. Compared to baselines, Codex is
relatively more performant at test oracle generation than code
mutation. Jigsaw [60] uses LLMs to synthesize code that
performs data transformations, then leverages user-provided
test cases to post-process the LLM-outputted code. Their
approach significantly outperforms the task-specific neural-
backed generators in AutoPandas [61]. Kharkar et al. [62] use
LLMs to filter out false positives in static analysis. To check
null pointer warnings, they ask the LLM to complete the code
before the flagged code. If the LLM adds a null check, they
consider the warning to be a true positive. This yields 17.5%
improvements in precision for null pointer warnings. Overall,
these results suggest that strategic use of LLMs can improve
the performance of many software engineering tools.

11

REFERENCES

[1] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, (New York, NY, USA), pp. 416–
419, ACM, 2011.

[2] G. Fraser and A. Arcuri, “Whole Test Suite Generation,” IEEE Trans-
actions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[3] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated Test Case
Generation as a Many-Objective Optimisation Problem with Dynamic
Selection of the Targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, 2018.

[4] A. Arcuri, “Many Independent Objective (MIO) Algorithm for Test Suite
Generation,” in International Symposium on Search Based Software
Engineering, pp. 3–17, Springer, 2017.

[5] A. Arcuri, “Test suite generation with the Many Independent Objective
(MIO) algorithm,” Information and Software Technology, vol. 104,
pp. 195–206, 2018.

[6] A. Aleti, I. Moser, and L. Grunske, “Analysing the Fitness Landscape of
Search-Based Software Testing Problems,” Automated Software Engg.,
vol. 24, p. 603–621, sep 2017.

[7] N. Albunian, G. Fraser, and D. Sudholt, “Causes and Effects of Fitness
Landscapes in Unit Test Generation,” in Proceedings of the 2020 Genetic
and Evolutionary Computation Conference, GECCO ’20, (New York,
NY, USA), p. 1204–1212, Association for Computing Machinery, 2020.

[8] Y. Lin, Y. S. Ong, J. Sun, G. Fraser, and J. S. Dong, “Graph-Based Seed
Object Synthesis for Search-Based Unit Testing,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2021, (New York, NY, USA), p. 1068–1080, Association for Computing
Machinery, 2021.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
Large Language Models Trained on Code,” CoRR, vol. abs/2107.03374,
2021.

[10] G. F. Stephan Lukasczyk, “Pynguin: Automated Unit Test Generation
for Python,” CoRR, vol. abs/2202.05218, 2022.

[11] flutils contributors, “flutils.” https://gitlab.com/finite-loop/flutils, 2022.
Accessed June 22nd, 2022.

[12] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[13] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[14] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-Based Software
Engineering: Trends, Techniques and Applications,” ACM Comput.
Surv., vol. 45, dec 2012.

[15] EvoSuite contributors, “evosuite.” https://github.com/EvoSuite/evosuite,
2022. Accessed August 18th, 2022.

[16] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[17] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

[18] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[19] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-
T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du, et al., “Lamda: Language
models for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.

[20] K. Cobbe, V. Kosaraju, M. Bavarian, J. Hilton, R. Nakano, C. Hesse, and
J. Schulman, “Training verifiers to solve math word problems,” arXiv
preprint arXiv:2110.14168, 2021.

[21] Sara Crouse, Sebastian Nagel, “Common Crawl.” https://commoncrawl.
org/, 2022. Accessed August 22nd, 2022.

[22] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, et al., “Competition-
level code generation with alphacode,” arXiv preprint arXiv:2203.07814,
2022.

[23] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[24] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming,
pp. 1–10, 2022.

[25] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative model
for code infilling and synthesis,” arXiv preprint arXiv:2204.05999, 2022.

[26] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “A conversational paradigm for program synthesis,” arXiv
preprint arXiv:2203.13474, 2022.

[27] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister,
G. Sittampalam, and E. Aftandilian, “Productivity assessment of neural
code completion,” in Proceedings of the 6th ACM SIGPLAN Interna-
tional Symposium on Machine Programming, pp. 21–29, 2022.

[28] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic Generation of
Programming Exercises and Code Explanations Using Large Language
Models,” in Proceedings of the 2022 ACM Conference on International
Computing Education Research V. 1, pp. 27–43, 2022.

[29] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Can
OpenAI Codex and Other Large Language Models Help Us Fix Security
Bugs?,” arXiv preprint arXiv:2112.02125, 2021.

[30] J. A. Prenner and R. Robbes, “Automatic Program Repair with OpenAI’s
Codex: Evaluating QuixBugs,” arXiv preprint arXiv:2111.03922, 2021.

[31] Pynguin Contributors, “try generating specific function
Implementation.” https://web.archive.org/web/
20230209202307/https://github.com/se2p/pynguin/blob/
083c49677c55b5f94af619c25f727b5ff6ed8d63/src/pynguin/analyses/
seeding.py, 2022. Line 751. Accessed February 9th, 2023.

[32] S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study of auto-
mated unit test generation for Python,” Empirical Software Engineering,
vol. 28, no. 2, p. 36, 2023.

[33] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan,
F. Wee, J. E. Tan, Y. Yieh, B. Goh, F. Thung, H. J. Kang, T. Hoang,
D. Lo, and E. L. Ouh, “BugsInPy: A Database of Existing Bugs in
Python Programs to Enable Controlled Testing and Debugging Studies,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, (New York, NY, USA), p. 1556–1560, Association for
Computing Machinery, 2020.

[34] Pipreqs Contributors, “pipreqs.” https://github.com/bndr/pipreqs, 2022.
Accessed June 15th, 2022.

[35] A. Arcuri and L. Briand, “A Practical Guide for Using Statistical Tests
to Assess Randomized Algorithms in Software Engineering,” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, (New York, NY, USA), p. 1–10, Association for Computing
Machinery, 2011.

[36] Ned Batchelder, “coverage.py.” https://github.com/nedbat/coveragepy,
2010. Accessed January 25th, 2023.

[37] I. Rak-amnouykit, D. McCrevan, A. Milanova, M. Hirzel, and J. Dolby,
“Python 3 Types in the Wild: A Tale of Two Type Systems,” in
Proceedings of the 16th ACM SIGPLAN International Symposium on
Dynamic Languages, (New York, NY, USA), p. 57–70, Association for
Computing Machinery, 2020.

[38] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local Algo-
rithms for Document Fingerprinting,” in Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’03, (New York, NY, USA), p. 76–85, Association for Computing
Machinery, 2003.

[39] I. R. Bryson Lingenfelter, “copydetect.” https://github.com/blingenf/
copydetect, 2022. Accessed August 18th, 2022.

12

[40] G. Myers, “A Fast Bit-Vector Algorithm for Approximate String Match-
ing Based on Dynamic Programming,” J. ACM, vol. 46, p. 395–415, may
1999.

[41] H. Tanaka, “editdistance.” https://github.com/roy-ht/editdistance, 2022.
Accessed August 17th, 2022.

[42] M. Böhme, L. Szekeres, and J. Metzman, “On the Reliability of
Coverage-Based Fuzzer Benchmarking,” in 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering (ICSE), pp. 1621–1633,
2022.

[43] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An Industrial Evaluation of Unit Test Generation: Finding Real Faults
in a Financial Application,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), pp. 263–272, 2017.

[44] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in ICSE 2007, Proceedings of the 29th
International Conference on Software Engineering, (Minneapolis, MN,
USA), pp. 75–84, May 2007.

[45] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk,
“On Learning Meaningful Assert Statements for Unit Test Cases,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ICSE ’20, (New York, NY, USA), p. 1398–1409,
Association for Computing Machinery, 2020.

[46] E. Dinella, G. Ryan, T. Mytkowicz, and S. Lahiri, “TOGA: A Neural
Method for Test Oracle Generation,” in ICSE 2022, ACM, May 2022.

[47] M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan, “Generating
Accurate Assert Statements for Unit Test Cases Using Pretrained Trans-
formers,” in Proceedings of the 3rd ACM/IEEE International Conference
on Automation of Software Test, AST ’22, (New York, NY, USA),
p. 54–64, Association for Computing Machinery, 2022.

[48] A. Mastropaolo, N. Cooper, D. N. Palacio, S. Scalabrino, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Using Transfer Learning for Code-
Related Tasks,” IEEE Transactions on Software Engineering, 2022.

[49] Pynguin Contributors, “Generating Assertions.” https://web.archive.
org/web/20220615155509/https://pynguin.readthedocs.io/en/latest/user/
assertions.html, 2022. Accessed June 15th, 2022.

[50] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sun-
daresan, “Unit Test Case Generation with Transformers,” CoRR,
vol. abs/2009.05617, 2020.

[51] S. K. Lahiri, A. Naik, G. Sakkas, P. Choudhury, C. von Veh, M. Musu-
vathi, J. P. Inala, C. Wang, and J. Gao, “Interactive Code Generation via
Test-Driven User-Intent Formalization,” 2022.

[52] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[53] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[54] J. M. Rojas, G. Fraser, and A. Arcuri, “Seeding Strategies in Search-
Based Unit Test Generation,” Softw. Test. Verif. Reliab., vol. 26,
p. 366–401, aug 2016.

[55] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test
suite generation with dynamic symbolic execution,” in 2013 IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE),
pp. 360–369, 2013.

[56] Y. Lin, J. Sun, G. Fraser, Z. Xiu, T. Liu, and J. S. Dong, “Recovering
Fitness Gradients for Interprocedural Boolean Flags in Search-Based
Testing,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2020, (New York,
NY, USA), p. 440–451, Association for Computing Machinery, 2020.

[57] L. D. Toffola, C.-A. Staicu, and M. Pradel, “Saying ‘Hi!’ is not enough:
Mining inputs for effective test generation,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 44–49, 2017.

[58] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-Objective Automated
Testing for Android Applications,” in Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2016, (New
York, NY, USA), p. 94–105, Association for Computing Machinery,
2016.

[59] P. Bareiß, B. Souza, M. d’Amorim, and M. Pradel, “Code Generation
Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language
Models on Code,” 2022.

[60] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Raja-
mani, and R. Sharma, “Jigsaw: Large Language Models Meet Program
Synthesis,” in Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, (New York, NY, USA), p. 1219–1231,
Association for Computing Machinery, 2022.

[61] R. Bavishi, C. Lemieux, R. Fox, K. Sen, and I. Stoica, “AutoPandas:
Neural-Backed Generators for Program Synthesis,” Proc. ACM Program.
Lang., vol. 3, oct 2019.

[62] A. Kharkar, R. Z. Moghaddam, M. Jin, X. Liu, X. Shi, C. Clement,
and N. Sundaresan, “Learning to Reduce False Positives in Analytic
Bug Detectors,” in Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, (New York, NY, USA), p. 1307–1316,
Association for Computing Machinery, 2022.

13

