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Parametric generators combine coverage-guided and generator-based fuzzing for testing programs requiring
structured inputs. They function as decoders that transform arbitrary byte sequences into structured inputs,
allowing mutations on byte sequences to map directly to mutations on structured inputs, without requiring
specialized mutators. However, this technique is prone to the havoc effect, where small mutations on the byte
sequence cause large, destructive mutations to the structured input. This paper investigates the paradoxical
nature of the havoc effect for generator-based fuzzing in Java. In particular, wemeasuremutation characteristics
and confirm the existence of the havoc effect, as well as scenarios where it may be more detrimental. Our
evaluation across 7 real-world Java applications compares various techniques that perform context-aware,
finer-grained mutations on parametric byte sequences, such as JQF-EI, BeDivFuzz, and Zeugma. We find
that these techniques exhibit better control over input mutations and consistently reduce the havoc effect
compared to our coverage-guided fuzzer baseline Zest. While we find that context-aware mutation approaches
can achieve significantly higher code coverage, we see that destructive mutations still play a valuable role
in discovering inputs that increase code coverage. Specialized mutation strategies, while effective, impose
substantial computational overhead—revealing practical trade-offs in mitigating the havoc effect.
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1 Introduction
Generator-based fuzzing [19, 36] is a technique for testing programs with randomly generated
input data produced via a domain-specific generation function, which samples inputs conforming
to some data type or input-format structure. Parametric generators [3, 11, 26, 29, 38–40, 45] enable
mutations to be performed on inputs produced by such generators. This unlocks the benefits of
coverage-guided grey-box fuzzing [1, 7, 20, 21], which incorporates a feedback loop to guide input
generation.
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1 class Node {
2 Node left;
3 Node right;
4 byte data;
5 }

(a) Binary tree

node type.

1 Node generateNode(FuzzedDataProvider *provider) {
2 Node node = new Node();

3 if ( provider->ConsumeBool() ) {

4 node.left = generateNode(provider);
5 }

6 if ( provider->ConsumeBool() ) {

7 node.right = generateNode(provider);
8 }

9 node.data = provider->ConsumeIntegral<uint8>(10) ;

10 return node;
11 }

(b) OSS-fuzz-style C++ generator.

1 Node generateNode(Random random) {
2 Node node = new Node();

3 if ( random.nextBoolean() ) {

4 node.left = generateNode(random);
5 }

6 if ( random.nextBoolean() ) {

7 node.right = generateNode(random);
8 }

9 node.data = random.nextByte(10) ;

10 return node;
11 }

(c) Quickcheck-style Java generator.

Fig. 1. A simplified generator for binary tree nodes in C++, Fig. 1. (b) libFuzzer-style, and Java, Fig. 1. (c)

JQF-style. While designed for random sampling, grey-box fuzzers such as Zest [40], libFuzzer [7], and AFL [1]

supply a deterministic sequence of choices to generate certain input structures. These choices are made from

a fixed byte stream, which can be mutated.

01 01 00
00 04 00
03 01 00
00 02 01

(a) Seed input

01 01 00
00 01 00
03 01 00
00 02 01

(b) Mutation I.

01 01 00
00 04 00
03 00 00
00 02 01

(c) Mutation II.

00 01 00
00 04 00
03 01 00
00 02 01

(d) Mutation III.

Fig. 2. Four inputs as well as their corresponding binary tree object via the generateNodemethod (ref. Fig. 1).

The changed bytes are highlighted in red.

The key idea behind parametric generators is to treat generator functions as decoders of an
arbitrary sequence of bytes, producing structurally valid inputs given any pseudo-random input se-
quence. Fig. 1 depicts examples of such generators in C++ (via libFuzzer’s FuzzedDataProvider [8])
and in Java (via JQF [39]) for sampling binary trees; in the latter case, the Random parameter is a
facade for an object that extracts values from a regular InputStream. Fig. 2a depicts an example of
the decoding process. The illustrated bytes are color-mapped to decisions that consume them in
the generator functions from Fig. 1.
By providing the byte-sequence decoded by the generator to a conventional mutation-based

fuzzing algorithm, parametric generators get structured mutations “for free”. Fig. 2b shows how
a single byte mutation in the byte sequence leads to a small change in the data contained in the
corresponding binary tree.

This combination of (a) a method to produce structurally valid inputs, and (b) a method to make
small changes to structurally valid inputs, together enables structure-aware grey-box fuzzing. This
results in an ability to test deep program states beyond syntax parsing and validation [40]. The
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The Havoc Paradox in Generator-Based Fuzzing 1:3

high-level insight, popularized by Zest [40], is that small changes in the byte-sequence will map to
small changes in the structured input produced by the generators (e.g., the binary trees)... at least,
in theory.
This insight, while compelling, does not always hold. A common criticism of the parametric

generator approach is that certain mutations on the byte stream—especially on those bits whose
values influence conditional branches in the generator function—can lead to drastic changes in the
corresponding structured input being produced. Fig. 2d depicts such a case, where a single bit-flip
in the first byte leads to a completely different binary tree being produced. There is almost no
similarity between Fig. 2d and the original tree in Fig. 2a. We call this phenomenon the havoc effect,
inspired by the terminology used by AFL [1] and prior work [48, 53]. Havoc in AFL is a mutation
stage where multiple mutations are stacked to create new inputs, which tend to differ substantially
from parent inputs. Similarly, the havoc effect refers to cases where newly-created inputs differ
substantially from their parent inputs.

Intuitively, the havoc effect appears to be a severe limitation of the parametric generator-based
approach to structure-aware grey-box fuzzing. Grey-box fuzzing relies on subtle changes to explore
program paths incrementally. If mutants are too far from their parents, grey-box fuzzing degrades
into a black-box approach, where the feedback mechanism is unable to guide the exploration. We
thus expect that unpredictability from the havoc effect will make grey-box fuzzing less effective.
Because of this, researchers have developed techniques that perform context-aware mutations

that aim to better preserve structure of the original input. In JQF [39], the EI backend reduces the
destructiveness of mutations by tracking in which generation context the bytes are used. BeDiv-
Fuzz [38] separates structure-preserving mutations from structure-changing ones. Zeugma [26]
traces generator execution to enable structure-preserving cross-over across distinct inputs.

We note that structure-aware grey-box fuzzing can be performed without relying on generator
functions. The leading alternatives are grammar-based [13, 48, 51] or custom-mutator-based [9, 11]
fuzzing, which do not exhibit the havoc phenomenon, but are subject to other trade-offs limiting their
expressibility. However, quite paradoxically, at least one set of researchers [48] found that grammar-
based grey-box fuzzing actually improveswhen occasionally using an “aggressivemutation” strategy
akin to the havoc effect we described for parametric generators.
The main aim of this paper is to investigate the paradoxical nature of the havoc effect in

generator-based fuzzing by studying the properties of byte-level mutations, their effect on the
generated structured inputs, and the performance of generator-based greybox fuzzing under
mutation strategies more and less prone to the havoc effect.

In our investigation of the havoc effect, we conducted a thorough evaluation of generator-based
fuzzing techniques on 7 real-world Java applications. We introduce mutation distance, i.e. the
Levenshtein distance between the parent and child input, in order to better quantify the havoc
effect. Our analysis reveals five key insights: (i) context-aware mutation strategies such as JQF’s EI,
BeDivFuzz, and Zeugma significantly reduce the havoc effect—demonstrated by how closely the
byte-level changes correspond to the resulting string-level changes in the generated test inputs—as
compared to baseline techniques; (ii) context-aware mutations better preserve input validity than
random and Zest; (iii) techniques employing context-aware mutations (EI, Zeugma) can achieve
significantly higher code coverage than Zest, with EI showing up to 2.6% coverage improvement
on certain benchmarks and Zeugma achieving up to 8.3% higher coverage on others; (iv) despite
the benefits of structure preserving mutations, more destructive mutations remain valuable for
code exploration, as evidenced by our finding that mutations producing coverage-increasing
inputs typically have 1.2×–1.4× higher mutation distances than average for BeDivFuzz and EI; (v)
techniques using context-aware strategies incur runtime overhead ranging from 15-80% depending
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Algorithm 1: Stream-based NextByte method.
1 Function NextByte(bytestream 𝐵):
2 if HasNext(B) = false then
3 𝑏 ← RandomByte()

4 𝐵 ← 𝐵 ◦ 𝑏
5 return ReadNext(B)

on the benchmark and technique, presenting a clear trade-off between structured input exploration
and execution speed.

The main contributions of this paper are:
• A discussion of the havoc effect in parametric generators, and of its paradoxical impact on
saved inputs.
• Case studies demonstrating that the havoc effect negatively impacts coverage of program
behaviors that require more than simple left-to-right parsing, particularly affecting complex
semantic features in structured inputs.
• A comprehensive evaluation across seven real-world Java benchmarks that compares how
state-of-the-art generator-based fuzzing strategies (Zest, JQF’s EI, BeDivFuzz, and Zeugma)
mitigate the havoc effect. We introduce the concept of mutation distance to measure the
havoc effect in each of these techniques. The artifact is available at https://github.com/cmu-
pasta/havoc-mutation-eval.
• Empirical evidence showing that less mutation destructiveness can result in higher code
coverage, providing practical insights for future generator-based fuzzing algorithm design.

2 The Havoc Effect and its Potential Mitigation
We first detail the core technical background for parametric generators in order to understand why
the havoc effect occurs. Then, we describe EI as an approach to mitigate the havoc effect.

2.1 Parametric Generators

Parametric generators were introduced by Zest [40] in order to combine Quickcheck [19]-style
random generation functions with AFL [1]-style mutation-based grey-box fuzzing. The key idea
is to take an off-the-shelf generation function, which queries an API providing pseudo-random
values to produce a structurally valid input, and then run that generator with an explicitly provided
byte-stream that backs the “random” API. The byte-stream can then be mutated and the generator
replayed to get a new structurally valid input.
The data structure Node depicted in Fig. 1 is a simple example of a structured input. Node has

three fields: left, right, and data. Fig. 1c shows a Quickcheck-style [19] Java random generator
for Node. The values returned by the calls to random.getBoolean() direct the control-flow through
the generator; the values returned by random.nextByte() affect the data flow. A QuickCheck-like
testing system (e.g., junit-quickcheck [25]) can produce test inputs simply by calling this generator.

This generator can be made parametric by “backing” the random instance with a given bytestream
𝐵. This idea is implemented as follows. The random.XYZ methods rely on calls to an internal
function NextByte that produces pseudo-random bytes. For example, random.getBoolean() calls
NextByte once and returns a boolean value based on whether the result is odd or even. Similarly,
random.nextInt() calls NextByte four times, with the bytes subsequently cast into a four-byte
integer. In a regular random generator, NextByte uses a source of non-determinism from the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.

https://github.com/cmu-pasta/havoc-mutation-eval
https://github.com/cmu-pasta/havoc-mutation-eval


The Havoc Paradox in Generator-Based Fuzzing 1:5

operating system to generate the next pseudo-random byte value. In a parametric generator, the
implementation of NextByte is overridden to provide specific values instead. As detailed in Alg. 1,
NextByte takes a bytestream 𝐵 as input. When invoked, it reads the next byte from 𝐵 and returns.
If 𝐵 is fully read, the algorithm generates a new random byte and appends it to 𝐵 (Line 2-4). This
bytestream-backing of NextByte, along with the use of NextByte in all random.XYZ methods,
creates the mapping between bytestream and structured input in parametric generators.

Fig. 2 shows sample bytestreams and their corresponding Node object for our running example.
Each box represents a byte in hexadecimal notation. The color of the box corresponds to the location
where the byte is consumed in Fig. 1c.
Havoc effect. The core idea behind the use of parametric generators is that mutations at the

bytestream level are automatically turned into mutations at the structured input level.
Sometimes, these mutations are small. In Fig. 2a, the fifth byte 04 creates a data value of 4 for

the far-left leaf node of the tree. If this fifth byte’s value is mutated from 04 to 01 , as in Fig. 2b,
the structured input is mutated only slightly, with the far-left leaf node taking on the data value 1
instead.

However, mutations can also be much more destructive. In Fig. 2a, the first byte ( 01 ) of the byte
stream is consumed by the call to random.nextBoolean at Line 3 in Fig. 1c, to decide whether or
not to generate a left child for the root node. If this byte’s value is mutated from 01 to 00 , as in
Fig. 2d, we see the generated tree is drastically different from the one in Fig. 2a, with a different
shape and two fewer nodes. This is because the mutation to the first byte in the bytestream causes
all other bytes in the bytestream to be consumed at different locations in the generator, as illustrated
by the different colors in the bytestream on the left-hand-side of Fig. 2d. Further, the last 6 bytes of
the bytestream are not consumed by the generator at all, resulting in the smaller-sized tree.
So, while the bytestreams in Fig. 2a and Fig. 2d are more than 99% similar at the bit-level, the

inputs produced by the generator are widely different. We call this tendency for small bytestream
mutations to yield large structured input mutations the havoc effect.

2.2 Localized Mutations with Execution Indexing
The JQF framework [39] provides multiple “guidances” or algorithms for driving parametric gener-
ators, including Zest (which performs random point mutations on the byte-stream as described
above) as well as the structure-preserving ExecutionIndexingGuidance, which we refer to as
simply EI in this paper.1
The mutation III in Fig. 2d is highly destructive because the mutation of the first byte causes

all subsequent bytes to be consumed at different locations in the generator. This occurs because
NextByte processes the bytestream linearly. To make byte-level mutations less destructive, EI uses
a representation of the bytestream that associates the context in which each byte is consumed.

To represent context, EI uses execution indexing [27, 41, 54], which links dynamic execution events
across multiple traces (e.g., in Fig. 1c, uniquely identifying the “call to random.nextByte() setting
the data value for the right child of the left child of the root node” across multiple execution paths
through the generator during the fuzzing campaign). In EI, each execution index [(𝑙1, 𝑛1), ..., (𝑙𝑖 , 𝑛𝑖 )]
uniquely identifies a point in the execution trace as a list of tuples analogous to a call stack, where
each tuple (𝑙𝑖 , 𝑛𝑖 ) comprises the source location 𝑙𝑖 of a method call (i.e., the call site) and the count
𝑛𝑖 is an index of how many times 𝑙𝑖 has been executed with the context [(𝑙1, 𝑛1), ..., (𝑙𝑖−1, 𝑛𝑖−1)].

1Although the EI implementation in the JQF repository first appears as far back as 2017, there is no published work explaining
its logic; so, we provide an expanded description in this paper and for subsequent evaluation use the latest version as of
release JQF-2.0 (May 2023).
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Execution Index Data
[(L3, 1)] 01 : T
[(L4, 1), (L3, 1)] 01 : T
[(L4, 2), (L3, 1)] 00 : F
[(L4, 2), (L6, 1)] 00 : F
[(L4, 2), (L9, 1)] 04 : 4
[(L4, 1), (L6, 1)] 00 : F

Execution Index Data
[(L4, 1), (L9, 1)] 03 : 3
[(L6, 1)] 01 : T
[(L7, 1), (L3, 1)] 00 : F
[(L7, 1), (L6, 1)] 00 : F
[(L7, 1), (L9, 1)] 02 : 2
[(L9, 1)] 01 : 1

Fig. 3. EI-based byte sequence (left) and generated input (right), using the same underlying bytestream as in

Fig. 2a. The column “Execution Index” lists the context in which each byte is consumed, the column “Data”

lists the byte consumed and the corresponding generator “choice”.

EI, rather than storing the bytestream backing the pseudo-random instance as a linear sequence
(as in Alg. 1), instead stores the bytestream as a map from execution indexes to the byte value
consumed at that execution index. Fig. 3 shows this map given the generator shown in Fig. 1c and
seed input shown in Fig. 2a. The first column shows the execution indexes and the second column
presents the associated bytes and its interpreted value. Consider the first row in this table—when
the generator consumes the first byte to “choose whether to generate a left child for the root node”,
the corresponding execution index is [(L3, 1)]. Here, L3 points to Line 3 in the generateNode
method containing the call to random.nextBoolean(), and 1 indicates this is the first encounter
of this method invocation with nothing else on the call stack. Similarly, the execution index of
the third byte (see the third row of Fig. 3) is [(L4, 2), (L3, 1)]. Here, (L4, 2) indicates that the call
stack contains the second call to generateNode at this stack level (i.e., the “left child of the left
child of the root node”), where as (L3, 1) indicates that in this context we are considering the first
call to nextBoolean() to determine whether to generate another left child. Note that while these
bytes are consumed at the same static source code location (i.e., the call to random.nextBoolean
at Line 3), they have different dynamic execution indexes, reflecting that their runtime consumption

contexts are distinct. In fact, execution indexes are unique within a single program execution (i.e.,
for a single input generation in the fuzzing loop), and so all 12 rows in Fig. 3 have distinct indexes.

EI then performs structured-input generation and mutation according to the map-based represen-
tation𝑀 . As shown in Alg. 2 (contrast with Alg. 1), NextByte does not read the bytestream linearly.
Instead, given the current execution index 𝑒𝑖 where a byte is consumed, NextByte first checks if
𝑒𝑖 exists in the map𝑀 . If it does, NextByte returns the bytes associated with this 𝑒𝑖; otherwise, it
returns a new random byte and updates𝑀 to record the byte consumed. To mutate inputs, as in
Mutate in Alg. 2, EI chooses a random 𝑒𝑖 in𝑀 and mutates the corresponding byte.
This representation enables localized mutations, as seen with a 1-byte mutation in Fig. 3 that

creates a new input in Fig. 4. In contrast, the havoc mutation shown in Fig. 2d demonstrates how
altering the first byte of the bytestream—controlling whether the root node should have a left
child—leads not only to the removal of the left child but also to the creation of a right child. In
Fig. 4, mutating this first byte simply deleted the left child without changing the root node or the
right child. This is because EI’s NextByte, when, e.g., deciding to generate the data of the root
node, looks for the bytes consumed at the same execution index in the original input, rather than
consuming bytes sequentially.
EI otherwise functions similarly to Zest (in terms of deciding which inputs to save, etc.). We

hypothesize that EI thus reduces the occurrence of the havoc effect.
One potential limitation of EI is that constructing execution indexes introduces additional

overhead of instrumenting generators, potentially slowing down the fuzzing process. Thus, while
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Algorithm 2: EI-based NextByte and Mutate methods.
1 Function NextByte(EI-based input𝑀):
2 𝑒𝑖 ← CurrentEI()

3 if 𝑒𝑖 ∈ 𝑀 then
4 𝑏 ← 𝑀⟦𝑒𝑖⟧
5 else
6 𝑏 ← RandomByte()

7 𝑀 [𝑒𝑖 ↦→ 𝑏]
8 end
9 return 𝑏

10 Procedure Mutate(EI-based input𝑀):
11 𝑒𝑖 ← RandomSelect(𝑀)
12 𝑀 [𝑒𝑖 ↦→ RandomByte()]
13 return𝑀

Execution Index Data
[(L3, 1)] 00 : F
[(L4, 1), (L3, 1)] 01
[(L4, 2), (L3, 1)] 00
[(L4, 2), (L6, 1)] 00
[(L4, 2), (L9, 1)] 04
[(L4, 1), (L6, 1)] 00

Execution Index Data
[(L4, 1), (L9, 1)] 03
[(L6, 1)] 01 : T
[(L7, 1), (L3, 1)] 00 : F
[(L7, 1), (L6, 1)] 00 : F
[(L7, 1), (L9, 1)] 02 : 2
[(L9, 1)] 01 : 1

Fig. 4. EI-based byte sequence (left) and generated input (right) after mutating the 1st byte of the input map

depicted in Fig. 3. The mutated byte is highlighted in red.

EI offers more precise and localized mutations, it may increase computational cost, resulting in
lower fuzzing throughput.

3 Consequences of the Havoc Effect
It is hard, based on intuition alone, to determine whether the havoc effect is inherently good
or bad for fuzzing performance. As aforementioned, Gramatron [48] explicitly added aggressive
mutation strategies to improve the performance of grammar-based greybox fuzzing. Similarly, the
standard best practice when running AFL variants is to disable the deterministic mutation stage by
default [33, 35]. So, in this section, we look at some instances where the havoc effect could have a
negative impact on the coverage achieved.
First, consider the small checkLTR and checkRTL functions in Fig. 5, which accept as input

a single Node, as generated by Fig. 1. While the functions are semantically identical, we expect
parametric generator-based fuzzing to have more difficulty reaching the error path in checkRTL
than checkLTR. This is because the generator in Fig. 1 generates the input in a left-to-right order.
We illustrate this with a Markov chain model (similar to AFLFast [14]). For simplicity, let us

assume the fuzzer mutates only one byte at a time. The seed input (Fig. 2a) covers Line 2 in
both checkLTR and checkRTL. But, as neither of the conditions in Line 2 are satisfied, evaluation
short-circuits, and the seed input does not cover Line 3 in either checkLTR or checkRTL.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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1 void checkLTR(Node n) {
2 if (n.left == null
3 && n.right == null) {
4 // Error path
5 }
6 }

1
24Cover: LTR:2

Input:
TTFF4F3TFF21

Cover: LTR:3
Input:

FTFF40

1
12 Cover: LTR:4

Input:
FF0

3

4

1

2
0

0

4

(a) Left-to-right example.

1 void checkRTL(Node n) {
2 if (n.right == null
3 && n.left == null) {
4 // Error path
5 }
6 }

1
24Cover: RTL:2

Input:
TTFF4F3TFF21

Cover: RTL:3
Input:

TTFF4F3F0

0

Cover: RTL:4
Input:

FFX

3

4

1

2

X

3

0

4

Cover: N/A
Input:

FTFF41

0

4

(b) Right-to-left example.

Fig. 5. Code snippets that process input in left-to-right and in right-to-left-order, relative to the generation

order in Fig. 1. The Markov chain model represents the probability of the fuzzer discovering a new input that

covers a new branch, given a seed input. Each node indicates the lines covered by the input and the sequence

of choices made by the generator. The byte highlighted in red represents the one that must be mutated to

produce the next input. Edges indicate saved mutations, with the numbers representing the probability of the

fuzzer performing the corresponding mutation.

The Markov chain model in Fig. 5a illustrates the process by which the fuzzer covers the error
path in checkLTR. Initially, the fuzzer mutates the first byte of the seed input, resulting in the
removal of the root’s left child, as depicted in Fig. 2d. This mutation allows the new input to reach
Line 3, and the fuzzer saves this input for further mutations. Subsequently, the fuzzer mutates
the second byte, removing the root’s right child. The mutated input thus satisfies the condition at
Line 3, leading to the coverage of the error path.

On the other hand, given the same input, the fuzzer cannot cover the error branch in CheckRTL no
matter how many mutations are performed, as shown in Fig. 5b. Suppose the fuzzer first performs
mutation II shown in Fig. 2c, which generates a tree whose root node has no right child. This input
is saved by the fuzzer because it reaches Line 3 in checkRTL, but the condition is not satisfied.
In order to satisfy the condition at Line 3, the following mutation needs to remote the left child.
However, any single mutation in the bytestream that affects the choice to generate the left child
would change how all the subsequent bytes are interpreted, similarly to mutation III in Fig. 2d. Thus,
no single-byte mutation allows the fuzzer to remove the left child, which preserves the absence of
the right child (the red dashed line in Fig. 5b), allowing both conditions at Line 3 and Line 2 to be
satisfied.

We use EI and Zest to analyze checkLTR and checkRTL, allowing each fuzzer one million trials,
repeated 1000 times. Both EI and Zest achieve a 100% error path discovery rate for checkLTR,
meaning they consistently trigger the error path in all 1000 repetitions. For checkRTL, EI maintains
a 100% error path discovery rate, while Zest achieves this in only 79% of the repetitions.
The natural question is whether such input reading (e.g., reading the input in non-generated

order or reading the input multiple times) behavior occurs in the wild. To investigate this, we ran
some preliminary experiments on the Google Closure benchmark. Closure is a Javascript compiler
written in Java, used in the original benchmark suite for Zest [40]. In particular, we ran both
Zest [40] and JQF’s EI on this benchmark. Examining several 24-hour runs, we saw JQF’s EI had
the ability to cover one particular code fragment, which Zest did not.
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Fig. 6. Case study of fuzzing the Closure Javascript compiler (written in Java). EI can find an input that covers

the analyzeIf statement, which requires introducing an if statement before the statement calling foo; this
is hard for Zest to cover due to the havoc effect which disrupts the suffix of the input containing the foo call

whenever Zest manages to generate an if statement.

This code fragment is illustrated in Fig. 6. Fig. 6 shows the process by which EI identifies an
input covering a branch in the closure compiler’s cost estimator for all our initial experiments. This
branch is not covered by Zest. A seed input (top left) covers four statements (highlighted in cyan in
Fig. 6) within the costEstimator method. In the seed input, the statement call(foo) is a method
call with a function pointer as an argument. This call triggers the cost estimation path for the foo
method. To estimate the execution cost for foo, the estimator proceeds by iterating and analyzing
the cost of each statement enclosed in foo. Since the definition of foo in the seed input includes a
for statement, the seed input covers the analyzeFor statement found within the costEstimator
method.
The generator used in these experiments generates the JavaScript program in sequential order.

Initially, it constructs the foo method. Following this, it generates the call(foo) statement. How-
ever, the costEstimator method processes the input in reversed order. It interprets the statements
contained within the foo method if and only if the call(foo) expression exists.

To cover the analyzeIf statement from here, a mutated input needs to add an if statement into
the foo method while keeping the call(foo) statement. Let’s consider a scenario where both Zest
and EI successfully generate a mutation that introduces an if statement after the for statement.
Thanks to its structure-preserving mutations, EI is able to insert this if statement without disturbing
the subsequent statements (top middle of Fig. 6). Conversely, due to the havoc effect, this mutation
in Zest removes the call(foo) statement (bottom middle of Fig. 6). When the closure compiler is
executed with these mutated inputs, the one generated by EI successfully extends the coverage
to include the analyzeIf statement. In contrast, the Zest-generated input fails to augment the
coverage: the call(foo) statement has been turned into a return statement, so the code guarded
by methodCallWithFunction(input) is not executed.

This example motivates the value of reducing the havoc effect in order to cover certain program
behaviors. Thus, we propose to examine whether different generator-based coverage-guided fuzzing
systems demonstrate the havoc effect, as well as whether this results in an overall positive or
negative effect on fuzzing performance on a broader benchmark set.
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4 Closely Related Work
While we discussed EI in Section 2.2 to illustrate the consequences of the havoc effect, EI is not the
only technique for context-aware mutations. This section provides background on two additional
tools for performing finer-grained mutations in generator-based fuzzing: BeDivFuzz [38] and
Zeugma [26]. Readers can skip over to Section 5 if they are familiar with these techniques.

4.1 Structure Preserving Mutations in BeDivFuzz
Inspired by the parametric generators in Zest, BeDivFuzz is a feedback-driven and generator-
based fuzzer that encourages generating valid inputs with behavioral diversity [38]. In particular,
BeDivFuzz quantifies the behavioral diversity of input by measuring the effective number of
diversely covered branches after executing this input [38]. Driven by this diversity feedback,
BeDivFuzz adapts its mutation strategies to generate new inputs.

To achieve these two kinds of mutations, BeDivFuzz splits the random choices in its parametric
generator into structural and value choices. Consider the input in Fig. 2d as an example. The bytes
1–4 are used to generate boolean values that decide the structure of the binary tree. The bytes 5–6
are used to generate the integer values in the nodes of the binary tree. In this case, bytes 1–4 are
structural choices and bytes 5-6 are value choices. BeDivFuzz requires these choices to be explicitly
separated by the generator developer. That is, the blue and teal decision points in Fig. 1 (Lines 3, 6)
need to labelled as structural choices, and the beige decision point (Line 9) needs to be labelled as a
value choice.

By separating the two types of decision points, and thus, of byte parameters, BeDivFuzz allows for
localized mutations to change only the values that do not affect branch conditions while preserving
the overall input structures. For the binary tree in Fig. 2d, such structure-preserving mutations will
only mutate the bytes in the beige cells while keeping the bytes in the blue and teal cells the same.
The resulting binary tree will still be a root node with a right child, except that the values in these
nodes might change.

4.2 Smart Crossover in Zeugma
Crossover is an effective technique to generate new input by combining parts of multiple inputs
together [1, 7, 13, 20, 24, 44]. Traditional crossover techniques, like slicing two inputs at random
locations, are ineffective for generated-based fuzzing as they fail to preserve semantic information
(e.g., slicing the bytes that generate the left child of the root node). Zeugma addresses this by
proposing tree-structured slicing, which slices bytestreams based on method call boundaries (e.g.,
generateNode in Fig. 1) and performs crossover using bytes consumed by the same method.

For each saved input, Zeugma generates a parametric call tree, decomposing the bytestream into
nodes based on the method call boundaries. Fig. 7 shows the parametric call trees for the inputs in
Fig. 2a and Fig. 2d. In input 1, calling generateNode consumes three bytes and makes two method
calls: the call to generateNode at Line 4 (abbreviated as gen:4) to generate the root node’s left
child, and the call gen:7 for the right child. For linked crossover, Zeugma selects a node in the
parent input’s call tree that consumes multiple bytes, records the sequence, then finds a node in
the supplier input calling the same method and replaces the byte sequence in the parent input with
that from the supplier. For instance, gen:4 in input 1 consumes bytes 2-7 to produce the left child,
while gen:7 in input 2 consumes bytes 3-5 for the right child. Zeugma can select input 1 as the
parent, replacing bytes 2-7 with bytes 3-5 from input 2, resulting in a new binary tree that swaps
the left child in input 1 with the right child from input 2 (as shown in Fig. 7).
While linked crossover effectively mutates bytestreams while preserving high-level structure,

relying solely on it in generator-based fuzzing may limit the generation of interesting inputs. For
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Fig. 7. The parametric call tree for the input 1 (Fig. 2a) and input 2 (Fig. 2d). Note that gen:X represents the

method call to generateNode at Line X (Fig. 1c). To perform linked-crossover Zeugma slices based on method

call boundaries (e.g. the gen method) and creates a new input by replacing the left child node from input 1

with the right child node from input 2.

instance, removing the right child of the root node in the seed input requires changing the 8th byte
from 01 to 00, which linked crossover cannot achieve as it only replaces slices. Therefore, Zeugma
combines structured linked crossover with existing random byte mutation (c.f. Section 2.1).

5 Evaluation
The goal of our evaluation is to determine how the havoc effect influences the performance of
generator-based fuzzers, identify the conditions under which it negatively impacts code coverage,
and assess whether existing structure-preserving techniques effectively mitigate this effect. Our
evaluation is structured around the following research questions.
RQ1: How destructive, in terms of edit distance, are the mutations performed by our studied
techniques?
RQ2: How much do the mutations performed by our studied techniques preserve input validity?
RQ3: How do the mutations performed by our studied techniques impact overall code coverage?
RQ4: Does the additional complexity in our studied techniques affect fuzzing throughput?

In order to answer these questions, we follow the experimental procedures below.

Techniques and Baselines. We evaluate Zest [40], EI, BeDivFuzz [38], and Zeugma [26], as well as
two baselines: Random and Zest-Mini. The Random baseline is a modification of Zest that always
generates a completely new child byte sequence rather than performing a mutation of the parent
input byte sequence, similar to QuickCheck. Zest-Mini is a variant of Zest that only performs 1
mutation with a mean mutation distance of 4 bytes on the parent byte sequence, as opposed to
the default Zest settings that apply an average of 8 mutations of 4 bytes each on the parent byte
sequence. To isolate the performance overhead introduced by Zeugma’s linked-crossover technique,
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Fig. 8. Scatterplot of mutation distance (between parameter byte sequences on the X-axis, and between

the corresponding test inputs generated by the fuzzer on the Y-axis) for the Google Closure benechmark.

We observe that techniques that perform context-aware mutations (EI, BeDivFuzz, Zeugma) exhibit less of

the havoc effect, i.e. inputs that have a small byte mutation distance and high string mutation distance. Δ
measures how correlated the mutation on the parameter byte sequence is with the mutation on the resulting

string input.

Table 1. Characteristics of our benchmark applications.

Benchmark Generator LOC Gen-LOC
Ant [2] XML 140k 136
Maven [37] XML 93K 136
Rhino Compiler [10] JavaScript 110K 250
Closure Compiler [4] JavaScript 250K 250
Chocopy [42] Python 6K 397
Gson [5] Json 26K 89
Jackson [6] Json 49K 89

we also include Zeugma-X [26], which eliminates crossover and splicing. We include Zeugma-X in
our evaluation solely to analyze the performance overhead of Zeugma’s instrumentation technique
and, therefore, do not report its code coverage results.

Benchmarks. We measure the impact of the havoc effect on 7 real-world Java programs with
4 different program generators. Each of the generators and test drivers are reused from prior
work [40, 49, 50]. Table 1 shows the detailed characteristics, including the benchmark name, the
generator used to generate input data, the lines of code of the benchmark program, and the lines of
code of the input generator.
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Duration. To measure edit distance between inputs, we use a time bound of 1 hour for each
experiment. To measure code coverage and performance of each technique, we use a time bound of
24 hours.

Repetitions. Accounting for randomness in fuzzing campaigns, we repeat each experiment 20
times and report aggregated statistics.

Metrics. In our evaluation, we would like to understand the impact of the havoc effect on input
edit distance, input validity (as defined by the fuzz driver), and code coverage. For RQ1, we report
the mutation distance for each technique, defined as the Levenshtein edit distance between the
parent input and the child input resulting from the mutation. Since inputs are represented as a
bytestreams for the parametric generator and strings for the target application, we report mutation
distance for both input representations. For RQ2, we report the frequency at which mutations from
each technique result in valid inputs, as specified by the test driver. For RQ3 and RQ4, we report
branch coverage statistics and runtime overhead2.

5.1 RQ1: Mutation Distance
First, we would like to understand how destructive the mutations from each of our evaluated
techniques are. To evaluate this, we compute the normalized Levenshtein distance between a
mutated (child) input and its parent. We call thismutation distance. When the mutant and its parent
are the same, the normalized mutation distance is 0. The greater the distance is, the more different
the mutant is from its parent. We run each technique for 1 hour and calculate mutation distances
for all inputs (filtering out empty string inputs).
Recall that inputs are represented as a sequence of bytes upon which mutations are performed

(ref. Section 2). To measure the impact of the havoc effect on the inputs comprehensively, we
need to evaluate both the byte-level mutations and their resulting changes in the generated string
inputs. Fig. 8 presents a scatterplot visualization that correlates the normalized mutation distance
of parameter byte sequence (X-axis) with the corresponding normalized mutation distance of the
string input produced by the generator. For the sake of space, we provide this visualization for just
the Closure benchmark; the plots for the rest of the benchmarks can be found Appendix A. This
visualization reveals not only the distribution of byte-level mutation sizes across techniques but also
how these modifications translate to changes in the final string representation. We can then identify
techniques that make relatively small changes to byte sequences yet produce disproportionately
large changes in the generated inputs (indicating a strong havoc effect). We include a dashed line
of slope 1 as reference to indicate where we expect each of these points to be along; we generally
expect mutations to have similar byte-level mutation distance as string mutation distance.

In Fig. 8, we can observe that the techniques performing context-aware mutations (EI, BeDivFuzz,
Zeugma) generally feature fewer points in the top left corners of the plots than Zest. This suggests
that these techniques, compared to these baselines, are able to do more targeted mutations and
produce similar inputs when mutating a small number of bytes. We also note that BeDivFuzz
displays a somewhat bimodal distribution, either only mutating a small or large percentage of
bytes. Zeugma exhibits a much more uniform distribution of byte-level mutation distance. While
EI shows more points closer to the dashed line, a cluster of points along the Y-axis still shows some
persistence of the havoc effect. When looking at the plots of the baseline techniques, we note that
all the points for the Random baseline live on the right side of the plot by design; a new child input

2When reporting mutation distance for the Random baseline, we measure the distance between the parent input and a
randomly generated child input. Although the Random baseline does not perform “mutations”, we include its mutation
distance to provide a baseline that performs completely destructive mutations to sample new byte sequences.
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is generated without mutating the parent byte sequence, which would result in an input with high
byte-level mutation distance. We interestingly observe that some inputs that have high byte-level
mutation distance have much smaller string mutation distance. For Zest-Mini, we observe that
limiting Zest to one mutation of 4 bytes does not mitigate the havoc effect substantially, as the
distribution of points is fairly similar to that of Zest .

In the plot for Zest-Mini in Fig. 8, we also illustrate the distance from the dashed line with slope
𝑛 = 1. This provides an indication of whether the mutations are controlled, i.e. whether the size of
the mutation on the parameter bytestream is correlated with the resulting input mutation. So, we
define Δ, normalized mutation distance difference, as the difference between string-level mutation
distance and byte-level mutation distance (string distance minus byte distance). Positive values of
Δ indicate the presence of the havoc effect, where mutations to the parametric bytestream cause
relatively larger mutations to the string.

Fig. 9 shows the averageΔ over all points for each technique-benchmark pair.We expect that more
sophisticated techniques exhibit Δ closer to zero. First, we observe that Zest exhibits consistently
large positive values, showing that even small byte-level changes frequently result in large string
mutations. EI, BeDivFuzz, and Zeugma demonstrate more balanced mutation control, with values
closer to zero in many benchmarks. This suggests that these techniques successfully implement
context-aware mutations that result in more proportional changes to the final string representation.
BeDivFuzz particularly stands out with its consistently low values across benchmarks like Closure
and Rhino. Random shows a lower average Δ compared to Zest because its higher byte-level
mutation distances lead to predominantly negative Δ values (Fig. 8).

Interestingly, we also observe benchmark-specific variations. For Maven, most techniques seem
to avoid the havoc effect (showing negative values). BeDivFuzz exhibits high Δ for Gson and Jackson
compared to the other benchmarks. This highlights how the havoc effect’s magnitude depends not
only on the mutation technique but also on the input generator and the target application.

○ Finding #1: Techniques performing context-awaremutations (EI, BeDivFuzz, Zeugma) exhibit
more control over mutations than the coverage-guided fuzzing baselines (Zest, Zest-Mini). This
results in a decrease in the havoc effect.

In our measurements, we also noticed a number of "zero mutations" for each technique—-cases
where a mutation produces a child input identical to its parent. Zero mutations occur when the
mutation to the input bytestream does not change the generator-produced input, effectively creating
a duplicate input. For example, in Fig. 2a, where altering the first byte to either 00 or 02 results
in identical binary trees, because both mappings yield false in the generator (Line 3).
Fig. 10 shows the percentage of zero mutations for all techniques on each benchmark. We first

note that the random baseline achieves close to no zero mutations across all benchmarks. Zest-Mini,
which performs a single mutation of 4 bytes, displays a significantly higher percentage of zero
mutations; this is expected, as the byte-level representation of the child inputs are much more
similar to their parents compared to the other techniques. So, while Zest-Mini does somewhat
mitigate the havoc effect (ref. Fig. 9), it appears to do this with the price of more zero mutations
than the other techniques.

We also notice a significantly higher percentage of zero mutations in all techniques when testing
ChocoPy. This suggests that the ChocoPy generator is implemented in a way such that a significant
percentage of parametric inputs are decoded to the exact same string input. We recommend that
researchers and practitioners should track the zero mutation rate as a method of debugging and
improving generators.
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Fig. 9. Heatmap of mutation distance difference, with the benchmark on the X-axis and technique on the

Y-axis (values closer to zero are better). We observe that techniques that perform context-aware mutations

(EI, BeDivFuzz, Zeugma) demonstrate better control over mutations.
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Fig. 10. Percentage of zero mutations (i.e., children identical to parent) out of all generated inputs for the

studied techniques. Techniques that mutate a smaller number of bytes tend to produce a higher percentage

of zero mutations. Lower is better.

○ Finding #2: Techniques mutating a relatively smaller number of bytes (Zest-Mini) produce a
higher percentage of zero mutations. Context-aware mutation techniques exhibit a similar zero
mutation rate as Zest. The implementation of the generator also affects the frequency of zero
mutations across all techniques.

5.2 RQ2: Validity-Preserving Mutations
Next, we want to understand which techniques are able to preserve input validity when performing
mutations. Validity of inputs for each benchmark is defined in its corresponding fuzz driver; these
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Fig. 11. Percentage of validity-preserving mutations for all studied techniques. Higher is better.

include syntactic checks for JSON and semantic checks for ChocoPy, Javascript, and XML. For each
technique, we measure the percentage of mutations applied on valid parent inputs that result in
valid child inputs.

Fig. 11 shows the percent of validity-preserving mutations (filtering out zero mutations) for each
technique, across all benchmarks. The bars for the Random baseline provide a measurement of
how often the input generator, on its own, is able to generate valid inputs. For Gson and Jackson,
since the validity check is only syntactic, the random JSON generator always produces valid JSON
inputs. Thus, the validity preserving mutation rate is 100% for all techniques.

In general, all of themutation-based techniques achieve a higher percentage of validity-preserving
mutations than the random baseline. The techniques producing inputs with lower mutation distance
(Zest-Mini, BeDivFuzz) achieve a higher percent of validity-preserving mutations than the other
techniques. This is expected, as child inputs are more similar to parent inputs and are more likely to
retain features relevant to validity. Similarly, EI generates inputs with higher percentage of validity
than Zest. As shown in Fig. 9, EI demonstrates better control over mutation distances, thus having
less destructive mutations than Zest. Therefore, it is not surprising that the mutations in EI better
preserve input validity.

○ Finding #3: Parametric mutation-based fuzzing techniques substantially improve input
validity compared to random generation. Our analysis shows that while the studied techniques
perform similarly overall, those that modify fewer bytes in the parametric input tend to better
preserve validity across mutations.

5.3 RQ3: Coverage Comparison
RQ3 examines how different fuzzing techniques compare in terms of the coverage achieved across
each benchmark. We report the coverage achieved by all techniques over 24-hour experiments.
Since the techniques are implemented in different frameworks with their own instrumentation, we
include both a trial-bounded and time-bounded comparison.

The time-bounded comparison runs each fuzzing campaign for 24 hours. For the trial-bounded
comparison, we take the minimum number of inputs generated across all campaigns and truncate
all coverage results to that number.
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Since Zeugma is implemented in a framework with faster instrumentation compared to the JQF-
based tools, we also introduce the baseline Zeugma𝑁 , which normalizes Zeugma’s coverage using
a three-step process: (1) recording Zest’s total execution count, (2) measuring the time Zeugma-X
needs to reach this count, and then (3) determining howmuch coverage Zeugma reaches within that
same timeframe. Our comparative analysis serves two complementary purposes: the trial-bounded
branch coverage approximates each technique’s potential performance without implementation
overhead, while Zeugma𝑁 estimates coverage if Zeugma also uses Zest’s instrumentation frame-
work. Our final evaluation employs branch coverage collected via JaCoCo (version 0.8.7), following
recommendations from prior literature [26, 35].

Fig. 12 displays median branch coverage over time for all techniques. The shaded areas represent
the min and max code coverage across 20 repetitions. Table 2 shows the median branch coverage
for both trial-bounded and time-bounded comparisons. We first observe that the Random baseline
performs significantly worse on all benchmarks than Zest. This is expected, as the input validity
constraints are fairly strict. Zest-Mini shows no statistical difference in branch coverage compared
to Zest, in all benchmarks but ChocoPy.
We find fairly mixed results across the techniques computing context-aware mutations. EI is

able to achieve the same or significantly better results than Zest all benchmarks. From RQ1, we
note that EI generally exhibits less of the havoc effect than Zest. This suggests that more targeted
mutations can be beneficial for exploring the input space. Looking at the time-bounded comparison,
EI achieves significantly higher branch coverage in ChocoPy and Closure, even with the execution
overhead of performing these context-aware mutations.

Interestingly, BeDivFuzz achieves significantly less branch coverage than Zest in all benchmarks
but Gson and Jackson. While this is partially due to the execution overhead in BeDivFuzz, we
see that the branch coverage is significantly lower even in the trial-bounded comparison. This
suggests that more destructive mutations are still desirable for exploring new code paths. We believe
BeDivFuzz is essentially filtering down the Zest mutations to the least-destructive ones, whereas
EI and Zeugma are introducing finer-grained mutations while retaining still more destructive
mutations.

When looking at the branch coverage achieved by Zeugma, we note that the tool is implemented
in a different framework that performs faster instrumentation than the JQF-based tools. Thus, the
fixed-trial branch coverage and Zeugma𝑁 provide a fairer comparison to the other techniques.
We find that Zeugma is able to achieve significantly greater median coverage than Zest in four
out of seven benchmarks. On the Javascript-based targets, Zeugma performs significantly better
than EI on Rhino. On Closure, however, while Zeugma shows better performance than EI, its
normalized version (Zeugma𝑁 ) performs worse when accounting for execution speed differences.
Zeugma achieves a significantly lower branch coverage than EI on Ant but significantly higher on
Maven. Looking at Fig. 9 from Section 5.1, Zeugma has an average mutation distance difference of
-0.2 for both of these XML-based targets. This suggests that it depends on the target program on
whether the destructiveness of the mutation helps with code coverage. The trial-bounded coverage
measurement and Zeugma𝑁 also highlight that the branch coverage is influenced by confounding
variables such as the execution speed of the underlying fuzzing framework, which can mask a
technique’s true effectiveness when code coverage is compared directly. We discuss these findings
further in Section 8.

○ Finding #4: Techniques performing context-aware mutations (EI, Zeugma) can result in
significantly higher code coverage than coverage-guided fuzzing (Zest). However, incorporating
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Table 2. For each fuzzer, we report the median branch coverage in application classes for each subject across

20 fuzzing campaigns after 24 hours. Values in red indicate a statistically significant decrease compared to

Zest, while olive values show a significant increase. The highest value for each benchmark is highlighted in

blue.

Fuzzer
Ant Chocopy Closure Gson Jackson Maven Rhino

Fixed 24hr Fixed 24hr Fixed 24hr Fixed 24hr Fixed 24hr Fixed 24hr Fixed 24hrTrial Trial Trial Trial Trial Trial Trial

Random 622.5 755.0 876.0 876.0 10908.5 11227.0 319.0 319.0 1112.0 1113.0 600.0 669.5 3162.5 3227.0
Zest-Mini 911.5 914.0 875.0 876.0 12407.5 12443.5 321.0 321.0 1121.0 1121.0 1085.5 1138.0 3514.5 3631.5
Zest 919.5 920.5 889.0 889.0 12405.0 12520.0 321.0 321.0 1121.0 1121.0 1100.5 1138.0 3474.5 3542.5
EI 918.0 920.5 898.5 899.0 12679.5 12853.5 321.0 321.0 1121.0 1121.0 1117.5 1138.0 3459.5 3494.0
BeDivFuzz 888.5 891.5 880.0 889.0 12209.5 12373.0 321.0 321.0 1121.0 1121.0 683.5 697.0 3286.0 3310.0
Zeugma 904.0 908.5 877.0 877.0 12707.5 13406.5 321.0 321.0 1123.0 1123.5 1138.0 1138.0 3798.5 3852.0
Zeugma𝑁 N/A 903.5 N/A 877.0 N/A 12737.5 N/A 321.0 N/A 1123.5 N/A 1138.0 N/A 3838.0

more destructive mutations is also important for exploring new code paths, as BeDivFuzz
consistently achieves lower coverage than Zest.

We also would like more closely understand how the mutations performed by our evaluated
techniques relate to code coverage. In particular, we would like to understand how mutation
distance relates to coverage increases. We compare the mutation distances of all generated inputs
(“All”) the subset of inputs that increased code coverage (“Saved”) during our one hour experiments
for all evaluated techniques. Fig. 13 shows the ratio of saved input median mutation distance to all
input mutation distance for all technique-benchmark pairs. We observe that the ratio is above 1
for EI and BeDivFuzz across all benchmarks, suggesting that more destructive mutations are more
beneficial for producing coverage-increasing inputs. Interestingly, Zeugma shows the opposite
trend, where mutations that produce saved inputs are significantly less destructive than the median
mutation over all inputs. This can be potentially explained by Zeugma’s approach of introducing
random mutations on top of their crossover splicing approach with 50% probability (ref. Section 4).
Zest shows a ratio of close to 1, suggesting that the average mutation distance is not significantly
different than the mutation distances resulting in saved inputs. We believe this type of analysis can
help tune various parameters in the fuzzing algorithm, such as the probability that more destructive
mutations are performed.

○ Finding #5: For BeDivFuzz and EI, the median mutation distance of mutations that produce
coverage-increasing inputs exceeds the medianmutation distance of all inputs, while for Zeugma,
the opposite holds. This suggests that BeDivFuzz and EI may benefit from more destructive
mutations, whereas Zeugma may benefit from fewer.

Notably, Zeumga is the only technique that combines both random byte mutation with context-
awaremutations, which potentially explains its higher coverage acrossmost benchmarks.We believe
this is the smartest approach to use in practice: the random byte mutations enable the fuzzer to
broadly explore diverse regions of the target program, while the context-aware mutations facilitate
targeted exploitation to cover deeper code paths. Moreover, as described in Section 3, context-
aware mutations demonstrate particular effectiveness in covering program locations that process
structured input in non-sequential order. Future work could investigate a strategic integration of
these complementary tactics for exploration and exploitation.
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Fig. 12. Median branch coverage over time (X axis is time, Y axis is number of branches covered) over 24

hours, with the shaded region representing the entire range across 20 repetitions.
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Fig. 13. Ratio of median mutation distance of saved inputs (those that increase code coverage) to median

mutation distance of all generated inputs. Values higher than 1 suggest that more destructive mutations

result in inputs that increase code coverage.

5.4 RQ4: Runtime Overhead
While we observe that techniques performing context-aware mutations are generally able to achieve
higher code coverage than the baselines, they often come at the cost of overhead. We would like to
understand this runtime overhead for each of our techniques. Table 3 shows the geometric mean
execution slowdown of inputs-per-second (24 hours, 20 repetitions) of the context-aware fuzzing
techniques compared to coverage-guided fuzzing. Since EI and BeDivFuzz are JQF-based tools, we
compare their execution speed to Zest. We compare Zeugma to a variant called Zeugma-X [26],
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Table 3. Geometric means of runtime slowdown of each technique, compared to coverage-guided fuzzing

baseline. Values closer to 0 indicate more runtime overhead of the technique.

Benchmark EI BeDivFuzz Zeugma

ant 0.83 × 1.18±1 0.93 × 1.19±1 0.56 × 1.16±1
chocopy 1.01 × 1.18±1 2.11 × 1.55±1 0.67 × 1.11±1
closure 0.85 × 1.10±1 0.76 × 1.10±1 0.66 × 1.13±1
gson 0.54 × 1.16±1 0.55 × 1.32±1 0.85 × 1.08±1
jackson 0.74 × 1.25±1 0.77 × 1.17±1 0.96 × 1.14±1
maven 0.43 × 1.15±1 0.20 × 1.27±1 0.72 × 1.08±1
rhino 0.64 × 1.12±1 0.83 × 1.17±1 0.90 × 1.04±1

which eliminates crossover and splicing. Values closer to zero (red) indicate more runtime overhead,
and values above one (green) indicate a faster execution speed than the baseline.

Our results reveal some interesting patterns regarding the runtime overhead of different fuzzing
techniques. Generally, the context-aware mutations in EI and BeDivFuzz result in significant
slowdown, with the notable exception of BeDivFuzz in the ChocoPy benchmark. BeDivFuzz demon-
strates anomalously high execution speed in ChocoPy. This is likely due to the fact that BeDivFuzz
only saves valid inputs and thus may perform (faster) random exploration for a significant portion
of the fuzzing campaign. We note that although BeDivFuzz achieves speedup on ChocoPy over
Zest, this may be due to executing less code in ChocoPy, as shown by its lower coverage in RQ3.

Overall, while the sophisticated techniques generally exhibit some runtime overhead compared
to the coverage-guided baseline, the magnitude varies significantly by benchmark. This suggests
that the efficiency of these techniques is highly dependent on the characteristics of the target
application. When considering these techniques or practical applications, users should weigh
the potential coverage gains against the performance impact for their specific context. We also
strongly encourage researchers to publish execution slowdown of each of the evaluated techniques
to provide more information about this tradeoff.

○ Finding #6: Techniques performing context-aware mutations incur significant runtime
overhead compared to regular parametric coverage-guided fuzzing. The choice of saving criteria
can also affect the overall execution speed throughout the campaign.

6 Threats to Validity
6.1 Construct Validity
In our study, we employ code coverage to quantify the effectiveness of different mutation strategies.
Leading fuzzing researchers continue to question whether bug detection rate or code coverage
are better predictors of finding new bugs [12, 15, 18] with coverage being slightly more consistent
as a predictor [12]. In the context of understanding whether havoc mutations prevent the fuzzer
from exploring certain branches in real-world applications, as illustrated in Fig. 5, we believe that
code coverage is an adequate measurement. Additionally, when the goal is to synthesize a fuzz
corpus for regression testing, coverage is more important and a necessary condition for finding
yet-unintroduced bugs.
Another threat to construct validity is our use of Levenshtein distance to measure mutation

distance. While this edit distance metric provides a generic approach to automatically quantify
mutations in string-based representations, it may not accurately capture semantic changes in
structured data, potentially leading to imprecise measurements. For example, in tree-structured
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inputs such as code programs, a tree-based mutation distance metric might better capture the
relationships between mutations and their effects on target behavior. The Levenshtein distance
treats all character-level edits equally, potentially missing the hierarchical importance of changes
in structured data formats.

6.2 Internal Validity
A threat to internal validity in our study is our method of measuring fuzzer overhead using trials
per second. This metric is influenced not only by the computational overhead of the fuzzer itself
but also by whether the generated inputs cause the program to execute slower code paths. The
variations in trials per second might therefore be attributed to differences in execution paths rather
than differences in fuzzer efficiency. This makes it challenging to isolate the true computational
overhead introduced by different mutation strategies.

6.3 External Validity
Our implementation is based on JQF [39], and all target applications and their input generators
are written in Java. Our conclusion may not be generalized to generator-based greybox fuzzers
targeting other programming languages such as libFuzzer [7] and cargo-fuzz [3]. Additionally, our
research focuses on target applications that process inputs represented as strings. This choice was
made to facilitate the comparison of editing distances for generator-produced inputs. However,
this focus on string inputs might not extend to applications dealing with binary inputs, such as
PDF or image viewers.

7 Additional Related Work
Havoc mutations. Researchers and practitioners have introduced a havoc phase into grey-box

fuzzers to assist in escaping local minima [20, 33, 53, 55]. This approach has proven effective in
several studies and has been widely adopted by many state-of-the-art fuzzers [30, 35]. Kukucka et
al. [31] study perform an empirical study on the impact of various mutators in AFL++, including
the havoc mutation. It is important to distinguish the havoc mutation from the havoc effect, as the
latter refers to unintended behavior unique to generator-based fuzzing.

Grammar-based input generation. There is a rich body of work focusing on grammar-based
input generation for greybox fuzzing [9, 13, 16, 23, 47, 48, 56]. Gramartron translates context-free
grammar into a grammar automaton, simultaneously introducing havoc mutations as a strategy
to overcome the limitations of small-scale mutations, which it argues can inefficiently consume
a fuzzer’s time by focusing on localized, minor changes [48]. However, the effectiveness of such
a mutation strategy has been questioned in subsequent research [21], which suggests that havoc
mutations may not consistently yield improvements in generator-based coverage-guided fuzzing.
Our work builds on this discourse by being the first to conduct a comprehensive analysis of the
havoc effect within the realm of generator-based fuzzing, aiming to understand how the havoc
effect affects the performance of coverage-guided fuzzing.

Improve mutation precision. The pursuit of enhanced mutation precision has led researchers
to develop various techniques, predominantly in two areas: (1) leveraging input grammar to
refine mutation algorithms, exemplified by tools like DIE [43], Tzer [34], Bonsai fuzzing [50], and
FuzzChick [32]; and (2) employing dynamic analysis to pinpoint bytes of interest for mutation, as
seen in approaches such as Confetti [29], GreyOne [22], and Angora [17]. Specifically, DIE [43]
enhances mutation effectiveness by preserving “interesting” types and structures, which focuses the
search process. In a similar vein, Tzer [34] integrates tensor-compiler-specific mutations—tailored
for deep learning systems—with general-purpose mutation strategies to achieve a balanced mix of
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exploration and exploitation. Bonsai fuzzing [50], initially designed for generating smaller inputs,
also enhances fuzzing precision by gradually increasing the hyper-parameters that govern input
size. In contrast to these domain-focused methods, the EI-based generator distinguishes itself with
its versatility. It is uniquely adaptable across various generator-based fuzzers without relying on
domain-specific knowledge, thereby broadening its applicability.

8 Reflections
In this paper, we conducted a thorough evaluation of multiple fuzzing techniques across many
benchmarks. This required significant effort to look into the internal implementations of different
fuzzing techniques to log various intermediate results such as mutation distance, zero mutations,
and other metrics. Throughout this experience, we gained valuable insights that we hope can
benefit the fuzzing research community.

A fundamental question remains challenging to answer definitively: how can we determine if a
new fuzzing algorithm is "better" than existing approaches? This question is complex due to the
many confounding factors in fuzzing experiments that make it easy to draw incorrect conclusions.
Without careful consideration of these factors, researchers risk making claims that do not generalize
or may even be misleading.
First, how do we know that a new fuzzing algorithm is implemented correctly? The feedback

loop for fuzzing algorithms has a high cost, meaning it often takes considerable time—sometimes
days—to get results for a new implementation. There can also be subtle bugs in implementation
that may not surface in end-to-end metrics like code coverage. Although it may seem obvious, we
argue that fuzzing researchers should perform proper sanity checks for their implementations.
From our experience, examining intermediate-level metrics like mutation distance was able to
surface issues that would otherwise remain hidden in overall performance measurements, such as
the presence of zero mutations.
Second, how do we evaluate whether a new fuzzing algorithm outperforms other approaches?

Prior work [28, 46, 52] has advanced evaluation practices to better make statistical claims about
algorithms, ensuring multiple repetitions, appropriate statistical tests, seed control, and more.
However, many other factors remain to consider. As seen from our results, the best-performing
fuzzing algorithm can change across target applications. For researchers and practitioners looking
to use and evaluate fuzzing algorithms, a deeper analysis of intermediate results is valuable in
understanding the effectiveness of each technique. We urge researchers to perform and publish this
analysis so that the community can better isolate the reasons certain algorithms perform better on
different benchmarks.

We concretely recommend the following two practices:

(1) Reporting execution overhead of algorithms across all benchmarks. We saw that algorithms
had relatively different overheads, depending on the benchmark.

(2) Reporting count-based coverage measurements along with time-based coverage. This can
help isolate whether improvements in coverage are due to faster implementations or smarter
search strategies in the input space.

9 Conclusion
In this paper, we investigated the challenges associated with generator-based coverage-guided
greybox fuzzing, particularly focusing on the havoc effect, where small bytestream mutations result
in disproportionate changes in generator-produced inputs.We perform a thorough evaluation across
seven real-world Java programs measuring the impact of the havoc effect on various generator-
based fuzzing techniques, including context-aware mutation strategies such as JQF’s EI, BeDivFuzz,
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and Zeugma. By introducing the notion of mutation distance, measured as the Levenshtein distance
between the parent input and mutated child input, we are able to quantify the havoc effect in
each of the studied techniques. Our evaluation results find that context-aware mutation strategies
are able to significantly reduce the havoc effect and better preserve input validity than Zest, our
coverage-guided fuzzing baseline. But is the havoc effect actually good or bad? Our empirical
results indicate that the havoc effect is likely beneficial for initial exploration, but limiting this
effect allows exploitation to cover some deeper program paths. We also find that context-aware
mutation strategies incur significant runtime overhead, highlighting a practical tradeoff between
performance and speed. Techniques such as Zeugma that combine destructive and context-aware
mutations seem to perform very well overall. Our work provides insights into the nuanced interplay
between input mutation strategies and application characteristics that we hope will benefit future
researchers and practitioners in this field.
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10 Appendix
This appendix contains additional figures.

10.1 Scatterplots for all benchmarks
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(a) Maven

Fig. 14. Scatterplots of mutation distance (bytes on the X-axis, string on the Y-axis) across six target programs.

We observe that techniques that perform finer-grained mutations (EI, BeDivFuzz, Zeugma) exhibit less of the

havoc effect, i.e. inputs that have a small byte mutation distance and high string mutation distance.
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