Mining Temporal Properties of Data Invariants

Caroline Lemieux
Computer Science
University of British Columbia
Vancouver, BC, Canada

Abstract—System specifications are important in maintaining
program correctness, detecting bugs, understanding systems and
guiding test case generation. Often, these specifications are not
explicitly written by developers. If we want to use them for
analysis, we need to obtain them through other methods; for
example, by mining them out of program behavior. Several
tools exist to mine data invariants and temporal properties from
program traces, but few examine the temporal relationships
between data invariants. An example of this kind of relationship
would be “the return value of the method isFull? is false until
the field size reaches the value capacity”. We propose a data-
temporal property miner, Quarry, which mines Linear Temporal
Logic (LTL) relations of arbitrary length and complexity between
Daikon-style data invariants. We infer data invariants from
systems using Daikon, recompose these data invariants into
sequences, and mine temporal properties over these sequences.
Our preliminary results suggest that this method may recover
important system properties.

I. INTRODUCTION

Data invariants play an important role in maintaining pro-
gram correctness and aiding system comprehension. However,
they are rarely specified. An alternative to manual specification
is inference with a tool such as Daikon [6], which instruments
a program and dynamically infers data invariants by observing
multiple program runs. For example, a Queue class may include
fields size and capacity to represent the current and maximum
size of the queue, respectively. By observing the concrete values
of these fields from multiple program runs (often from test
cases), Daikon would infer an invariant size <= capacity.

However, data invariants fail to capture program function
over an important dimension: time. Understanding the tem-
poral relationships between events such as method calls is
often important; for example, we likely want the method
call open_file() to always be followed by the method call
close_file().

We introduce a tool called Quarry to help to bridge the
gap in understanding the interaction between data and time. In
particular, Quarry discovers temporal relationships between data
invariants. Returning to our Queue example; in addition to size
and capacity, our Queue may also have an isFull flag. Daikon
can infer a data invariant like (isFull ==true) <= (size ==
capacity) at some program points, but deeper comprehension
of the relationship requires us to talk about the relationship
between these invariants through time. Mining the temporal
property x U y, “x holds until y becomes true” should reveal

(isFull == false) U (size == capacity),

read as “isFull is false until size is equal to capacity’.
In fact, this “data-temporal” invariant reflects an important
correctness condition for the queue: it is not flagged as full until
it reaches capacity. We believe that data-temporal properties
will be useful to developers in developing test cases and

understanding systems, and could be incorporated into bug
detection or system modeling tools.

II. RELATED WORK

Since finding a satisfying assignment of events to a temporal
relation is NP-complete in general [9], most temporal property
mining tools focus on extracting small patterns and composing
them. Perracotta [21] mines response patterns (“x is always
followed by y”); Javert [8] mines alternating ((xy)*) and
resource allocation ((xz'y)*) patterns. Both combine these
small patterns into larger properties. Reger et al. use a
similar pattern-composition technique in [12] and extend it
to accomodate imperfect traces in [11]. Many other tools base
their inference on basic properties similar to these ([4], [9],
[10], [18], [20]). A general LTL formula checker is developed
in [19]. Texada [17] mines general LTL formulae from program
execution traces. The data invariant detection ideas developed
in Daikon [6], [7] have been adopted to create several tools
for program comprehension and test generation [3], [13]-[15].

Lorenzoli et al. propose merging temporal event rela-
tions and data invariants into Extended Finite State Machine
models [16]. Our work differs from this approach in that
we explicitly discover temporal relationships between data
invariants instead of classifying different temporal relationships
between method calls depending on which data invariants hold.
Such relationships are discovered by the tools presented in
[1], [2], which focus on application to embedded software and
hardware systems. These tools can only mine a small subset
of LTL patterns, while Quarry supports any LTL pattern. All
these tools are important precedents for the utility of data-
temporal invariants in broader contexts, such as in aiding test
case generation.

III. APPROACH

To build Quarry, we combine two existing tools. To detect
data invariants, we use Daikon [6], a dynamic tool which infers
likely data invariants by instrumenting the target program and
tracking variable state. Daikon mines invariants from templates
including inequality, implication and containment between
variables, which can be return values, global variables, or fields
[7]. To infer temporal relationships between data invariants,
we use Texada [17], a general Linear Temporal Logic (LTL)
property miner we previously developed.

LTL supports the usual boolean logic operators as well as
temporal operators, such as: X p, “p is true at the next point
in time”; G p, “p holds for this and all future points in time”;
Fp, “p holds at some point in the present or future”; and
p U g, “p is true up to the first time g becomes true.” These
operators allow a rich expression of temporal properties [5].
Since many users may not be familiar with LTL, we provide

Program
+ Tests

Data
Invariants

Data Prlgg.ram Data-Temporal
Trace oint Invariants
Sequence
Fig. 1. The Quarry process. Data trace creation in step 1 is performed by

a Daikon front-end, and data invariant inference in step 2a is performed by
Daikon. Data-temporal invariant inference in step 4 is performed by Texada.

commonly-used temporal invariant templates with Texada. We
now outline the Quarry process in Figure 1.

We first generate data traces by applying a Daikon front-end
(such as Chicory or Celeriac), to a program and its test suite.
These tools automatically instrument programs to produce data
trace files (step 1 in Figure 1). We then run Daikon on the
data trace to obtain data invariants on program points (step
2a). Since Daikon removes the temporal sequence context of
program points, we retrieve the sequence of program points
from the data trace (step 2b). By replacing each program point
with an event consisting of the invariants holding at that point,
we produce the multi-propositional data-temporal event trace
(step 3), which is passed as input to Texada to infer data-
temporal invariants (step 4).

We extended Texada to mine temporal invariants in multi-
propositional traces (traces where several events occur at each
time step). This extension is vital because unlike method calls
or other temporal events, data invariants may persist through
time, even as other data invariants change. So, we need to
state all of the invariants which hold at each program point,
requiring support for multi-propositional mining. We have also
implemented confidence! thresholds in Texada, which allow
invariants to be mined in spite of exceptional traces or events.

IV. PROOF OF CONCEPT

We tested Quarry on data-temporal traces found by running
Daikon on one of its Java examples, QueueAr, an array-based
queue. These data-temporal traces were created from the Daikon
output as described in the previous section.

By mining the pattern G(p) with a confidence threshold
of 0.9 we found G ("this.back <= size(this.theArray[]) —1”),
meaning the queue’s back pointer was nearly always within
range of the array representing the queue. We were initially
surprised that this property did not hold with confidence 1.
But, further inspection revealed that this confidence reflects
the fact that the array is empty at some time: at one violating

IConfidence of a property type measures how often that property type is
falsified. A confidence of 1 indicates the property type is never falsified on the
trace; a lower confidence means that the property type is sometimes falsified.

program point the Daikon invariant this.back >= 0 was inferred
but not this.back <= size(this.theArray[]) —1. In fact, if this
invariant held at confidence 1, it might be a signal that the
test suite needs to be expanded to include situations when the
queue is empty.

As another example, mining the property type —x U y with x
set constant to “this.currentSize <= size(this.theArray[])—
1” (current size of the queue is smaller than the maximum size
of the array it is represented by) yielded two interesting values
for y;

—(this.currentSize <= size(this.theArra -1 U
y
(this.back < size(this.theArrayl[]) —1)

and

—(this.currentSize <= size(this.theArray[])—1) U
(this.front < size(this.theArray[]) —1).

These suggest that the invariants relating the front position,
back position, and size of the queue all appear at similar
program points in the execution, likely when the queue is
first created. We see that these invariants confirm correctness
conditions for the queue.

V. FUTURE WORK AND CONCLUDING REMARKS

Texada in its current form treats atomic propositions as
strings, ignoring the logical interpretation of the invariants
(data invariants are not simple atomic propositions, but logical
clauses). This is problematic for several reasons; notably,
Texada still considers two atomic propositions to be distinct
based on their equality as strings. Consider a queue with
initial capacity 10. We would expect to discover the invariant
“(size < 10) U (isFull == true)”. However, suppose at some
point before isFull == true, the mined invariant is size ==
instead of size < 10. This point in time would cause rejection
of “(size < 10) U (isFull == true)” with full confidence. We
are working on expanding this equality determination to more
accurately reflect the logical meaning of the data invariants.

Run on its own, Daikon outputs a wide variety of invariants,
some of which have little meaning in a temporal property
mining context. For example, invariants which involve the
local return value of a method describe this value simply as
return regardless of which method returns it; out of context,
we cannot know which method a return value corresponds to.
This problem could be solved by re-introducing the context of
these return values when we create the data-temporal trace by
adding program point names.

Quarry presents a major contribution to program analysis
tools, as it is the first tool to our knowledge concerned with
finding temporal relationships of arbitrary length and complexity
between data invariants. Our preliminary results suggest data-
temporal properties yield more information about systems than
data invariants and temporal properties alone.

ACKNOWLEDGEMENTS

Thanks to Dennis Park for implementing several important
Quarry features, including multi-propositional trace support
and data-temporal trace parsing. This research is funded by an
NSERC discovery award and an NSERC USRA award.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

M. Bertasi, G. Di Guglielmo, and G. Pravadelli. Automatic generation
of compact formal properties for effective error detection. In 2013
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 1-10, Sept 2013.

M. Bonato, G. Di Guglielmo, M. Fujita, F. Fummi, and G. Pravadelli.
Dynamic property mining for embedded software. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS *12, pages 187-196, New
York, NY, USA, 2012. ACM.

M. Boshernitsan, R. Doong, and A. Savoia. From daikon to agitator:
Lessons and challenges in building a commercial tool for developer
testing. In Proceedings of the 2006 International Symposium on Software
Testing and Analysis, ISSTA ’06, pages 169-180, New York, NY, USA,
2006. ACM.

S.-C. K. David Lo and C. Liu. Mining temporal rules for software
maintenance. Journal of Software Maintenance and Evolution: Research
and Practice, 20(4):227-247, 2008.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property
specifications for finite-state verification. In ACM/IEEE International
Conference on Software Engineering (ICSE), 1999.

M. D. Emst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering (TSE), 27(2):99-123, 2001.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1-3):35-45,
Dec. 2007.

M. Gabel and Z. Su. Javert: Fully automatic mining of general temporal
properties from dynamic traces. In ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), Atlanta,
GA, USA, 2008.

M. Gabel and Z. Su. Symbolic Mining of Temporal Specifications.
In Proceedings of the 2008 International Conference on Software
Engineering, 2008.

M. Gabel and Z. Su. Online inference and enforcement of temporal
properties. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages
15-24, New York, NY, USA, 2010. ACM.

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

H. B. Giles Reger and D. Rydeheard. Automata-based pattern mining
from imperfect traces. In Proceedings of the Second International
Workshop on Software Mining. ASE 2013, November 11-15.

H. B. Giles Reger and D. Rydeheard. A pattern-based approach to
parametric specification mining. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering. ASE
2013, November 11-15.

S. Hangal, N. Chandra, S. Narayanan, and S. Chakravorty. Iodine: A
tool to automatically infer dynamic invariants for hardware designs. In
Proceedings of the 42Nd Annual Design Automation Conference, DAC
’05, pages 775-778, New York, NY, USA, 2005. ACM.

S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 291-301, Orlando, FL, USA, 2002.

J. Henkel and A. Diwan. A tool for writing and debugging algebraic
specifications. In Proceedings of the 26th International Conference on
Software Engineering, ICSE ’04, pages 449-458, Washington, DC, USA,
2004. IEEE Computer Society.

D. Lorenzoli, L. Mariani, and M. Pezz¢. Automatic generation of
software behavioral models. In ACM/IEEE International Conference on
Software Engineering (ICSE), 2008.

Texada. https://bitbucket.org/bestchai/texada.

S. Thummalapenta and T. Xie. Mining exception-handling rules as
sequence association rules. In Proceedings of the 31st International
Conference on Software Engineering, ICSE °09, pages 496-506, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

W. van der Aalst, H. de Beer, and B. van Dongen. Process mining
and verification of properties: An approach based on temporal logic. In
R. Meersman and Z. Tari, editors, On the Move to Meaningful Internet

Systems 2005: CooplS, DOA, and ODBASE, volume 3760 of Lecture
Notes in Computer Science, pages 130-147. Springer Berlin Heidelberg,
2005.

W. Weimer and G. C. Necula. Mining temporal specifications for error
detection. In Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS’05,
pages 461-476, Berlin, Heidelberg, 2005. Springer-Verlag.

J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: Mining
temporal API rules from imperfect traces. In ACM/IEEE International
Conference on Software Engineering (ICSE), pages 282-291, Shanghai,
China, 2006.

