
JQF: Coverage-Guided Property-Based Testing in Java
Rohan Padhye

University of California, Berkeley
USA

rohanpadhye@cs.berkeley.edu

Caroline Lemieux
University of California, Berkeley

USA
clemieux@cs.berkeley.edu

Koushik Sen
University of California, Berkeley

USA
ksen@cs.berkeley.edu

ABSTRACT
We present JQF, a platform for performing coverage-guided fuzz
testing in Java. JQF is designed both for practitioners, who wish to
find bugs in Java programs, as well as for researchers, who wish to
implement new fuzzing algorithms.

Practitioners write QuickCheck-style test methods that take in-
puts as formal parameters. JQF instruments the test program’s
bytecode and continuously executes tests using inputs that are gen-
erated in a coverage-guided fuzzing loop. JQF’s input-generation
mechanism is extensible. Researchers can implement custom fuzzing
algorithms by extending JQF’s Guidance interface. A Guidance
instance responds to code coverage events generated during the ex-
ecution of a test case, such as function calls and conditional jumps,
and provides the next input. We describe several guidances that
currently ship with JQF, such as: semantic fuzzing with Zest, binary
fuzzing with AFL, and complexity fuzzing with PerfFuzz.

JQF is a mature tool that is open-source and publicly available. At
the time of writing, JQF has been successful in discovering 42 pre-
viously unknown bugs in widely used open-source software such
as OpenJDK, Apache Commons, and the Google Closure Compiler.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Coverage-guided fuzzing, property-based testing, QuickCheck
ACM Reference Format:
Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-
Guided Property-Based Testing in Java. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’19), July 15–19, 2019, Beijing, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3293882.3339002

1 INTRODUCTION
Coverage-guided fuzzing (CGF) has recently become a very popu-
lar technique for automatic test-input generation. CGF tools like
AFL [17] and libFuzzer [7] have discovered thousands of bugs and
security vulnerabilities in programs that parse binary data, such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’19, July 15–19, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6224-5/19/07. . . $15.00
https://doi.org/10.1145/3293882.3339002

1 @RunWith(JQF.class)

2 class TrieTest {

3 @Fuzz /* Arguments are generated randomly by JQF */

4 public void testMap2Trie(String key ,

5 Map <String ,Integer > map){

6 assumeTrue(map.containsKey(key));
7 Trie trie = new PatriciaTrie(map); // Map2Trie

8 assertTrue(trie.containsKey(key));
9 }

10 }

Figure 1: A sample property test using JQF that checks the
construction of a Trie data structure in Apache Commons
from an input JDK Map. Fires an assertion violation (bug
COLLECTIONS-714) when fuzzing with ZestGuidance.

image decoders and media players. CGF works by first inserting
lightweight instrumentation in a program under test for collecting
code coverage. Then, the program is continuously executed with
randomly generated inputs. If the program crashes, a bug is found.
Instead of generating inputs from scratch, CGF evolves a set of
saved inputs, starting with user-provided seed inputs. New inputs
are generated via byte-level mutations such as bit flips and random
insertion of interesting values. If a new input leads to an increase
in code coverage, it is saved for subsequent mutation. The process
repeats until a time budget expires.

The research community has produced several extensions to
the basic CGF algorithm. Manès et al. [11] provide an extensive
survey of various custom fuzzing algorithms found in the literature.
For each of these new fuzzing algorithms, researchers produced
standalone variants of AFL, libFuzzer, or other fuzzing tools.

In spite of all this research effort, most existing fuzzing tools
target x86 binaries or C/C++ programs that expect inputs as bi-
nary or textual files. These tools are not suited for driving conven-
tional software tests, where inputs can be arbitrary data structures.
Property-based testing tools in the lineage of QuickCheck [3] al-
low randomized testing of such highly structured inputs, but don’t
support a feedback-directed fuzzing loop.

We present JQF, a platform for performing coverage-guided
fuzzing of Java programs. The JQF platform meets the following
design goals:

(1) JQF enables practitioners to use coverage-guided fuzzing for
testing programs that require structured inputs, using the
familiar style of property-based testing.

(2) JQF enables researchers to prototype new coverage-guided
fuzzing algorithms to drive property-based tests.

JQF is publicly available at https://github.com/rohanpadhye/jqf
as well as on Maven central (edu.berkeley.cs.jqf:jqf-fuzz).

398

https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://github.com/rohanpadhye/jqf

ISSTA ’19, July 15–19, 2019, Beijing, China Rohan Padhye, Caroline Lemieux, and Koushik Sen

2 FUZZINGWITH JQF
Practitioners can use JQF to automatically generate test inputs for
parameterized test methods using coverage-guided fuzzing. Figure 1
shows an example of a JQF test driver written in Java, which aims
to check a basic property of the class PatriciaTrie from Apache
Commons Collections. A trie data structure can be constructed
from a pre-existing mapping of strings in a JDK Map object.

The test method testMap2Trie checks the following property:
Given an arbitrary string key and a JDK mapwhose keys are strings,
if key exists within map, then a trie constructed from this map
should also contain the same key. The @Fuzz annotation on the test
method enables JQF to automatically generate random instances of
map and key to verify this property. The JUnit AssumeAPI allows the
user to specify preconditions on the generated inputs (e.g. Line 6).
Test generation can be launched via JQF’s Apache Maven plugin1:

mvn jqf:fuzz -Dclass=TrieTest -Dmethod=testMap2Trie

By default, JQF uses the Zest algorithm (§4.2) to generate test inputs.
Fuzzing continues either until it is explicitly stopped, until a user-
specified timeout expires, or until a test failure is encountered.

For the test in Figure 1, the Zest fuzzing engine often finds a test
failure in about 5 seconds, after executing about 5,000 test inputs (of
which over 1,700 satisfy the precondition on Line 6). The failing test
case leads to an assertion violation at Line 8 due to a very special
corner case, which reveals a bug in Apache Commons Collections
v4.3. If the input map contains two distinct keys that differ only
in a trailing null character, say "x" and "x\u0000", then the trie
cannot distinguish between them and ends up storing only one of
the two keys. If the input key is also "x", then the bug is revealed2.

JQF was specifically designed to enable practitioners to write test
methods in the familiar style of property-based testing. JQF is built
on top of junit-quickcheck [6], which itself is a Java port of the
popular QuickCheck [3] tool. Thus, the test driver in Figure 1 can
still be run with vanilla junit-quickcheck, which randomly gen-
erates test inputs without using code coverage feedback. However,
random-from-scratch input generation is exceedingly unlikely to
generate inputs fitting precise bug-revealing conditions, like those
described above. Pure random generation does not find a failing test
case for Figure 1 even after 30 minutes (over 7 million executions).

3 FUZZING FRAMEWORK
We next explain how JQF generates random inputs, such as map and
key in Figure 1, using coverage-guided algorithms called guidances.

3.1 The Guidance Interface
Figure 2 shows the Guidance interface. Researchers can imple-
ment this interface to specify a coverage-guided fuzzing algorithm.
Guidance instances are stateful objects whose methods are invoked
by the JQF framework in a fuzzing loop (depicted in Figure 3).

The Guidancemethod hasInput() returns whether a new input
is available; the return value false ends fuzzing. The getInput()
method returns the next input generated by the Guidance, as an
InputStream. This stream is used to generate structured inputs
such as Map objects (see §3.2). The structured inputs, called args in

1Non-Maven users can launch JQF programatically or via command-line scripts.
2We stumbled upon this bug while writing an example for this paper.

1 public interface Guidance {

2 boolean hasInput ();

3 InputStream getInput ();

4 void handleResult(Result result , Throwable error);

5 Consumer <TraceEvent > generateCallBack(Thread thread);

6 }

Figure 2: The Guidance interface provided by JQF.

1 TestMethod test = ...; // @Fuzz test driver

2 Guidance guidance = ...; // Fuzzing algorithm

3 while (guidance.hasInput ()) {

4 // Generate args for test method

5 Object [] args = JQF.gen(test , guidance.getInput ());

6 try {

7 JUnit.run(test , args); // fires TraceEvent(s)

8 guidance.handleResult(SUCCESS , null);

9 } catch (AssumptionViolatedException e) {

10 guidance.handleResult(INVALID , e);

11 } catch (Throwable t) {

12 guidance.handleResult(FAILURE , e);

13 }

14 }

Figure 3: Pseudo-code of the fuzzing loop.

Figure 3, are then used to execute the test method via JUnit (Line 7).
Test execution generates TraceEvents, whose handling is described
in §3.3. At the end of test execution, the Guidance.handleResult()
method is invoked. The result can either be SUCCESS, INVALID, or
FAILURE, depending on whether the test method returned normally
(Line 8), due to a violation of assume (Line 10), or due to an ex-
ception/assertion violation (Line 12), respectively. The Guidance
instance updates its internal state based on the handling of code
coverage events and the test result. The internal state is then used
to generate new inputs in subsequent iterations of the fuzzing loop.

3.2 Parametric Generators
The arguments to a test method—such as map and key in Fig-
ure 1—are generated using the same mechanisms as supported
by junit-quickcheck. In general, inputs of type T are generated
by a backing Generator<T>, which provides a method to randomly
sample a new instance of T. junit-quickcheck can either (1) im-
plicitly pick a suitable generator from a library that it provides, (2)
be directed to synthesize such a generator automatically, e.g. using
the constructors or public fields of class T, or (3) be provided with
a hand-written Generator<T>.

In all cases, the generator uses a SourceOfRandomness object,
which provides an API for making non-deterministic decisions such
as: choosing from a list of alternatives (e.g. whether to instantiate a
TreeMap or HashMap for map in Figure 1), picking random sizes (e.g.
how many entries to insert in map), or populating primitives (e.g.
what keys and values to insert in map). In junit-quickcheck, the
default SourceOfRandomness is backed a pseudo-random stream
of bytes. JQF overrides this source to use the stream returned by
Guidance.getInput() instead (ref. Line 5 in Figure 3), thereby
making the generators deterministically dependent on the guidance.

399

JQF: Coverage-Guided Property-Based Testing in Java ISSTA ’19, July 15–19, 2019, Beijing, China

3.3 Code Coverage Events
When coverage-guided fuzzing is launched (e.g. via mvn jqf:fuzz),
the test program’s classes are instrumented on-the-fly using the
ASM bytecode manipulation library [13]. The instrumentation adds
logic to generate TraceEvents during test execution. For exam-
ple, a BranchEvent is generated when a test program executes a
conditional branch, a CallEvent accompanies a method invoca-
tion, and an AllocEvent signals the creation of a new object or
array on the heap. These event objects contain information about
their source program locations as well other event-specific data.
When a trace event e is generated in thread t, JQF invokes the
function handle_t(e), where handle_t is the callback returned
by Guidance.generateCallBack(t). The guidance must choose
how to update its internal state based on this coverage information,
which will presumably be used to generate subsequent inputs.

4 GUIDANCES
JQF currently ships with the following Guidance implementations.

4.1 No Guidance
The most trivial guidance, called NoGuidance, returns an infinite
stream of random values every time getInput() is called. This
guidance completely ignores code coverage events. This guidance
is almost equivalent to using vanilla junit-quickcheck.

4.2 Zest Guidance
JQF’s default guidance implements the Zest algorithm [15], which
is specifically designed for coverage-guided property testing. The
ZestGuidance returns dynamically sized parameter sequences via
the getInput() method, which are generated randomly for the
first iteration of the fuzzing loop. Zest maintains a set of saved
parameter sequences. The ZestGuidance generates new inputs by
randomly mutating previously saved parameter sequences. Byte-
level mutations on these parameter sequences correspond to struc-
tural mutations in the generated test inputs. For example, a random
mutation in the parameter sequence for map in Figure 1 may lead
to the corresponding Generator<Map> to produce the next map
with an additional entry. Dynamic sizing allows the parameter
sequences to be lazily extended (if the Generator needs to make
more choices than expected) or to be efficiently truncated (if the
Generator makes fewer choices). Further, Zest separately tracks
code coverage achieved by all test executions and code coverage
by valid test executions (i.e., those whose result is SUCCESS). If a
mutated parameter sequence leads to new code coverage overall,
or if it leads to a valid test that covers code which has not been
covered by any previous valid test, then the sequence is saved for
subsequent mutation. Zest has been used to find complex semantic
bugs, such as issues within compiler optimizations3.

4.3 AFL Guidance
JQF supports input generation using the popular AFL [17] tool,
unmodified. This is possible because AFL, which is designed to
fuzz C/C++ programs and x86 binaries, communicates with in-
strumented test programs via inter-process messages and a code

3https://github.com/google/closure-compiler/issues/2842

coverage map in shared memory. The AFLGuidance in JQF im-
plements this communication protocol via a proxy program. The
proxy mocks an AFL-instrumented test target that reads input from
a specific file. AFLGuidance.getInput() simply returns the con-
tents of this file, which is continuously updated by AFL. During
test execution, AFLGuidance collects code coverage information
by handling TraveEvents. When AFLGuidance.handleResult()
is invoked, the coverage information is written to AFL’s shared
memory region via the proxy. Calls to AFLGuidance.hasInput()
block until AFL is ready with the next input.

AFL’s mutation strategy uses various heuristics that are applica-
ble to programs that parse fixed-size binary files (e.g. media players).
Further, AFL does not explicitly distinguish between INVALID and
FAILURE results. Due to these reasons, JQF’s AFLGuidance is most
effective when used with test methods that take only one argument
of type InputStream (since Generator<InputStream> returns the
guidance-generated input stream as-is), and that do not use any
assume statements. For example, AFLGuidance has been used to
fuzz OpenJDK’s ImageIO library that reads PNG and JPEG files4,
as well as Apache PDFBox’s processing of PDF documents5.

4.4 PerfFuzz Guidance
PerfFuzz [10] is a technique for automatically generating test in-
puts that maximize performance counters, such as loop execution
counts. PerfFuzz’s goal is to automatically discover hot spots and
performance bottlenecks. PerfFuzz is a fork of AFL that extends its
code coverage map with performance feedback in the form of ⟨k,v⟩
pairs where v is a value to be maximized for every key k . PerfFuzz
saves a mutated input either if it leads to new code coverage, or if
it maximizes the value of v for some key k .

JQF’s PerfFuzzGuidance is a sub-class of AFLGuidance which
overrides handleResult() to communicate this additional per-
formance map via the proxy program. PerfFuzzGuidance can be
configured either to find hot spots (where keys are branch locations
and values are execution counts for the corresponding branch) or
to find memory consumption issues (where keys are allocation sites
and values are number of bytes allocated at the corresponding site).
For example, we used PerfFuzzGuidance to find an algorithmic
complexity bug in the Google Closure Compiler, where reporting
a specific case of syntax error in a JavaScript program can take
time that is exponential in the size of the input program6. With
the memory allocation feedback, we found an issue in OpenJDK’s
handling of PNG images that specify very large dimensions7.

4.5 Repro Guidance
Finally, the ReproGuidance is a trivial guidance whose getInput()
method returns the contents of a given file on disk, and then ends
the loop. This guidance enables debugging of saved test failures.

5 EVALUATION AND IMPACT
Table 1 summarizes the impact that JQF has had in discovering
previously unknown bugs in widely used Java software. These

4https://bugs.openjdk.java.net/browse/JDK-8191073
5https://issues.apache.org/jira/browse/PDFBOX-4333
6https://github.com/google/closure-compiler/issues/3173
7https://bugs.openjdk.java.net/browse/JDK-8190332

400

https://github.com/google/closure-compiler/issues/2842
https://bugs.openjdk.java.net/browse/JDK-8191073
https://issues.apache.org/jira/browse/PDFBOX-4333
https://github.com/google/closure-compiler/issues/3173
https://bugs.openjdk.java.net/browse/JDK-8190332

ISSTA ’19, July 15–19, 2019, Beijing, China Rohan Padhye, Caroline Lemieux, and Koushik Sen

Table 1: Number of new bugs discovered using JQF.

Project Bugs Found Bugs Fixed

OpenJDK - ImageIO 9 9
OpenJDK - DateTime 2 1
Apache Commons - Lang 1 1
Apache Commons - Compress 2 2
Apache Commons - Collections 1 0
Apache Maven 3 3
Apache Ant 1 1
Apache BCEL 8 0
Apache PDFBox 4 4
Apache Tika 2 2
Google Closure Compiler 4 1
Mozilla Rhino 5 0
Total 42 24

bugs were found over the course of various experiments performed
throughout 2017–2019. The Zest paper [15] describes a systematic
study involving five of the projects from this table and three dif-
ferent guidances. The study showed that NoGuidance is not very
reliable, that AFLGuidance is effective in finding bugs in syntax
parsers, and that ZestGuidance excels at finding semantic bugs.
This study resulted in the discovery of 20 of the bugs in Table 1.

Of the total 42 bugs found using JQF, 11 semantic bugs were
found with ZestGuidance, 29 syntax parsing bugs were found with
AFLGuidance, and 2 bugs were found with PerfFuzzGuidance. 24
of the 42 reported bugs have been fixed at the time of writing, while
the rest await patches.

Notably, 7 of the 42 bugs (including 4 security vulnerabilities with
assigned CVEs) were discovered by two independent practitioners
who are not affiliated with the authors of this paper. We were made
aware of JQF’s success via social media [1] and blog posts [12]. All 7
of these bugs have been fixed. We are encouraged by these findings,
and believe that they provide evidence to support JQF’s usefulness
to the software testing community at large.

6 RELATEDWORK
JQF is one of few tools that enable coverage-guided fuzzing of
Java programs. Kelinci [9] is a wrapper around afl-fuzz that tar-
gets Java programs. Unlike JQF’s extensible guidance mechanism,
Kelinci’s instrumentation directly updates AFL-specific coverage
feedback; therefore, it cannot easily be adapted to work with tools
like PerfFuzz. Kelinci also expects a test driver with a main method
that reads inputs as files, in contrast to JQF’s property-based testing
approach. Thus, Kelinci does not support structured input fuzzing
algorithms such as Zest. Further comparison between Kelinci and
JQF can be found in a blog post by an independent security com-
pany [12]. Barro [8] has implemented another wrapper around AFL
for fuzzing Java main programs, similar to Kelinci. This tool actually
borrows its dynamic instrumentation logic from JQF itself.

There exist several other tools for generating tests for Java pro-
grams. Randoop [14] generates method call sequences randomly,
but does not use code coverage feedback. Evosuite [4] evolves a test

suite using genetic algorithms. Java PathFinder [16] enables sym-
bolic execution of Java programs. Korat [2] systematically explores
the input space of Java predicates. UDITA [5] performs bounded
exploration of test-input generators. Our tool, JQF, differs mainly
in that supports a different mechanism for test-input generation:
that of coverage-guided fuzzing.

ACKNOWLEDGMENTS
We would like to thank Tobias Ospelt of modzero AG for reporting
various issues with alpha versions of JQF. We appreciate the feed-
back of Tim Allison, VP of Apache Tika, on early bugs found by
JQF. We are also grateful to Paul Holser for developing the very ex-
tensible junit-quickcheck library, using which JQF is built. This
research is supported in part by gifts from Samsung, Facebook, and
Futurewei, and by NSF grants CCF-1409872 and CNS-1817122.

REFERENCES
[1] Tim Allison. 2018. #threeCheersForFuzzing. https://twitter.com/_tallison/status/

1050455776848949249. Accessed April 17, 2019.
[2] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:

Automated Testing Based on Java Predicates. In Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’02).
ACM, New York, NY, USA, 123–133. https://doi.org/10.1145/566172.566191

[3] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming (ICFP).

[4] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11).

[5] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,
and Darko Marinov. 2010. Test generation through programming in UDITA.
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. 225–234.
https://doi.org/10.1145/1806799.1806835

[6] Paul Holser. 2014. junit-quickcheck: Property-based testing, JUnit-style. https:
//pholser.github.io/junit-quickcheck. Accessed January 11, 2019.

[7] LLVM Compiler Infrastructure. 2016. libFuzzer. https://llvm.org/docs/LibFuzzer.
html. Accessed April 17, 2019.

[8] Jussi Judin. 2018. Binary rewriting approach [...] to fuzz Java applications with
afl-fuzz. https://github.com/Barro/java-afl. Accessed April 17, 2019.

[9] Rody Kersten, Kasper Luckow, and Corina S Păsăreanu. 2017. POSTER: AFL-
based Fuzzing for Java with Kelinci. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2511–2513.

[10] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:
Automatically Generating Pathological Inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018).
ACM, New York, NY, USA, 254–265. https://doi.org/10.1145/3213846.3213874

[11] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2018. Fuzzing: Art, Science, and
Engineering. CoRR abs/1812.00140 (2018). arXiv:1812.00140 http://arxiv.org/abs/
1812.00140

[12] Tobias Ospelt. 2018. AFL-based Java fuzzers and the Java Security Man-
ager. https://www.modzero.ch/modlog/archives/2018/09/20/java_bugs_with_
and_without_fuzzing/index.html. Accessed April 17, 2019.

[13] OW2 Consortium. 2018. ObjectWeb ASM. https://asm.ow2.io. Accessed August
21, 2018.

[14] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed Random
Testing for Java. In Companion to the 22nd ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications Companion (OOPSLA ’07).

[15] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le
Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’19). https:
//doi.org/10.1145/3293882.3330576

[16] Willem Visser, Corina S PÇŐsÇŐreanu, and Sarfraz Khurshid. 2004. Test input
generation with Java PathFinder. In ACM SIGSOFT Software Engineering Notes,
Vol. 29. ACM, 97–107.

[17] Michał Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
Accessed January 11, 2019.

401

https://twitter.com/_tallison/status/1050455776848949249
https://twitter.com/_tallison/status/1050455776848949249
https://doi.org/10.1145/566172.566191
https://doi.org/10.1145/1806799.1806835
https://pholser.github.io/junit-quickcheck
https://pholser.github.io/junit-quickcheck
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/Barro/java-afl
https://doi.org/10.1145/3213846.3213874
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
https://www.modzero.ch/modlog/archives/2018/09/20/java_bugs_with_and_without_fuzzing/index.html
https://www.modzero.ch/modlog/archives/2018/09/20/java_bugs_with_and_without_fuzzing/index.html
https://asm.ow2.io
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3293882.3330576
http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Fuzzing with JQF
	3 Fuzzing framework
	3.1 The Guidance Interface
	3.2 Parametric Generators
	3.3 Code Coverage Events

	4 Guidances
	4.1 No Guidance
	4.2 Zest Guidance
	4.3 AFL Guidance
	4.4 PerfFuzz Guidance
	4.5 Repro Guidance

	5 Evaluation and Impact
	6 Related Work
	Acknowledgments
	References

