
PerfFuzz: Automatically Generating Pathological Inputs
Caroline Lemieux

University of California, Berkeley, USA
clemieux@cs.berkeley.edu

Rohan Padhye
University of California, Berkeley, USA

rohanpadhye@cs.berkeley.edu

Koushik Sen
University of California, Berkeley, USA

ksen@cs.berkeley.edu

Dawn Song
University of California, Berkeley, USA

dawnsong@cs.berkeley.edu

ABSTRACT

Performance problems in software can arise unexpectedly when
programs are provided with inputs that exhibit worst-case behavior.
A large body of work has focused on diagnosing such problems
via statistical profiling techniques. But how does one find these
inputs in the first place? We present PerfFuzz, a method to au-
tomatically generate inputs that exercise pathological behavior
across program locations, without any domain knowledge. Perf-
Fuzz generates inputs via feedback-directed mutational fuzzing.
Unlike previous approaches that attempt to maximize only a scalar
characteristic such as the total execution path length, PerfFuzz
uses multi-dimensional feedback and independently maximizes exe-
cution counts for all program locations. This enables PerfFuzz to (1)
find a variety of inputs that exercise distinct hot spots in a program
and (2) generate inputs with higher total execution path length
than previous approaches by escaping local maxima. PerfFuzz is
also effective at generating inputs that demonstrate algorithmic
complexity vulnerabilities. We implement PerfFuzz on top of AFL,
a popular coverage-guided fuzzing tool, and evaluate PerfFuzz on
four real-world C programs typically used in the fuzzing literature.
We find that PerfFuzz outperforms prior work by generating in-
puts that exercise the most-hit program branch 5× to 69× times
more, and result in 1.9× to 24.7× longer total execution paths.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Software performance;

KEYWORDS

fuzz testing, performance, algorithmic complexity, worst-case

ACM Reference Format:

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018.
PerfFuzz: Automatically Generating Pathological Inputs. In Proceedings
of 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’18). ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3213846.3213874

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213874

1 INTRODUCTION

Performance problems in software are notoriously difficult to detect
and fix [39]. Unexpected performance issues can lead to serious
project failures and create troublesome security issues. For exam-
ple, a well-known class of Denial-of-Service (DoS) attacks target
algorithmic complexity vulnerabilities [1–3, 5, 23] which cause a
running program to exhaust computational resources when pre-
sented with worst-case inputs.

A large body of research has focused on diagnosing performance
problems by observing or statistically analyzing dynamically col-
lected performance profiles [12, 32, 44, 45, 54]. Almost all of these
techniques assume the availability of test inputs with which to exe-
cute the candidate program for performance profiling. But where
do these inputs come from? The most commonly chosen sources
include (1) specially hand-crafted performance tests [43, 45], (2)
standardized benchmark suites [12, 13, 22], (3) inputs that are com-
monly encountered in normal program usage (sometimes called
representative workloads) [31, 63], or (4) inputs sent by users experi-
encing performance problems [54]. These sources of inputs either
stress only average-case behavior, are subject to human bias and
error, or can only be obtained when the damage is already done.

A particular class of inputs which would be useful to developers
in alleviating these problems are pathological inputs. Pathologi-
cal inputs are those inputs which exhibit worst-case algorithmic
complexity in different components of the program. For example, a
program may use data structures such as hash tables and sorting
algorithms such as quicksort. Pathological inputs would be those
which, when executed, lead to many collisions in the hash table or
many swaps in the sorting routine. Such pathological inputs can
be identified as those which, given a fixed input length, maximize
the execution count of a particular program component.

We present PerfFuzz, a method to automatically generate patho-
logical inputs without any domain knowledge about the program.
PerfFuzz generates inputs via feedback-directed mutational fuzzing.
Fuzz testing, in which a program is bombarded with many randomly
generated inputs, has been very successful in finding security vul-
nerabilities and correctness bugs [15, 27, 37, 38, 47, 51, 58, 60]. State-
of-the-art fuzzing engines perform feedback-directed mutational
fuzzing [4, 19, 28, 51, 60]: new inputs are generated by mutating a
previously saved input, and new inputs are saved for future muta-
tion if they execute a new program location (i.e. they increase code
coverage). The key idea in PerfFuzz is to associate each program
location to an input that exercises that location the most. Inputs
that exercise some program location more than any previous input
are saved and prioritized for subsequent mutation. This enables

https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song

PerfFuzz to find a variety of inputs that exercise distinct hot spots
in a program, i.e., program locations that are frequently executed.

We evaluate the ability of PerfFuzz to find hot spots in four
real-world C programs commonly used in the fuzzing literature.
The inputs generated by PerfFuzz exercise the most-frequently
executed program branch 2×–39× times more often than the in-
puts generated by conventional coverage-guided fuzzing. We also
compare PerfFuzz with SlowFuzz [49], a recently-published work
on discovering algorithmic complexity vulnerabilities. PerfFuzz
outperforms SlowFuzz in discovering inputs exercising worst-case
algorithmic complexity in micro-benchmarks. PerfFuzz is also bet-
ter at generating pathological inputs in macro-benchmarks, finding
inputs that exercise the most-frequently executed program branch
5×–69× times more and have 1.9×–24.7× longer execution paths.
Unlike SlowFuzz, which tries to maximize only the total execution
path length, PerfFuzz uses multi-dimensional feedback and inde-
pendently maximizes the number of times each program location
is executed. We believe the performance response of a program is
not necessarily a convex function of its input characteristics. Thus,
the multi-dimensional objective may help PerfFuzz escape local
maxima, which explains its better performance.

To summarize, this paper makes the following contributions:
(1) We present PerfFuzz, an algorithm for generating inputs

that exercise pathological behavior in various program com-
ponents using feedback-directed mutational fuzzing. Like
fuzz testing tools such as AFL, PerfFuzz is input-format
agnostic. We release PerfFuzz as an open-source tool1.

(2) We empirically evaluate the efficacy of PerfFuzz in gener-
ating pathological inputs with that of AFL, a conventional
coverage-guided fuzzing tool.

(3) We empirically evaluate the efficacy of PerfFuzz in gener-
ating pathological inputs with that of SlowFuzz, a similar
feedback-directed fuzzing tool designed to find algorithmic
complexity vulnerabilities.

(4) We perform a manual analysis of the hot spots discovered
by PerfFuzz and describe the insights we gained as to how
varying input features affect the performance of different
program components.

2 OVERVIEW

2.1 A Motivating Example

The C program in Figure 1 is a simplified version of wf [6], a simple
word frequency counting tool that is packaged in the Fedora 27
RPM repository. The main program driver (omitted from the figure
for brevity) takes as input a string, splits the string into words at
whitespaces, and counts how many times each word occurs in the
input. To map words to integer counts, the program uses a simple
hashtable (defined at Line 11) with a fixed number of buckets. Each
bucket is a linked list of entries holding counts for distinct words
that hash to the same bucket. As each word is scanned from the in-
put, the program invokes the add_word function (Lines 22–40). This
function first computes a hash value for that word—implemented in
compute_hash (Lines 14–20)—and then attempts to find an existing
entry for that word (Lines 28–37). If such an entry is found, its

1https://github.com/carolemieux/perffuzz

count is incremented (Line 31). Otherwise, a new entry is created
with a count of 1 (Line 39).

When this program is used to compute word frequencies for
an input containing English text, the program does not exhibit
any performance bottlenecks. This is because English text usually
contains words of short length (about 5 characters on average) and
the number of distinct words is not very large (less than 10,000
in a typical novel). However, there are at least two performance
bottlenecks that can be exposed by pathological inputs.

First, if the input contains very long words (e.g., nucleic acid se-
quences, a common genomics application), the program will spend
most of its time in the compute_hash function. This is because the
compute_hash function iterates over each character in the word
irrespective of its length. For most applications, it is sufficient to
compute a hash based on a bounded subset of the input, such as a
prefix of up to 10 characters.

Second, if the input contains many distinct words (e.g., e-mail
addresses from a server log), the frequency of hash collisions in
the fixed-size hashtable increases dramatically. For such an input,
the program will spend most of its time in the function add_word,
traversing the linked list of entries in the loop at lines 28–37. In
the worst-case, the run-time of wf increases quadratically with the
number of words. This bottleneck can be alleviated by replacing
the linked list with a balanced binary search tree whenever the
number of entries in a bucket becomes very large.

Now, how does the developer of this program identify these
performance bottlenecks? If the inputs that exercised the behaviors
outlined above were available, then they could run the program
through a standard profiling tool such as GProf [32] or Valgrind [44]
and observe the source locations where the program spends most
of its time. They could also use a statistical debugging tool [54]
to compare runs of inputs that take a long time to process versus
inputs that are processed quickly. Alternatively, they could use an
algorithmic profiling tool [63] to estimate the run-time complex-
ity by varying the size of pathological inputs. But how does the
developer acquire such inputs in the first place? Our performance
fuzzing technique addresses exactly this concern.

2.2 Performance Fuzzing

Our goal is to generate inputs that independently maximize the
execution count of each edge in the control-flow graph (CFG) of
a program. We assume that we have one or more seed inputs to
start with. These seeds are test inputs designed for verifying func-
tional correctness of the program, and need not expose worst-case
behavior. In our experiments, we use at most 4 seeds, but usually
only 1. In the absence of such seeds, we can also simply start with
arbitrary inputs such as an empty string or randomly generated
sequences. The basic outline of our input-generation algorithm,
called PerfFuzz, is as follows:

(1) Initialize a set of inputs, called the parent inputs, with the
given seed inputs.

(2) Pick an input from the parent inputs that maximize the exe-
cution count for some CFG edge.

(3) From the chosen parent input, generate many more inputs,
called child inputs, by performing one or more random mu-
tations. These mutations include randomly flipping input

https://github.com/carolemieux/perffuzz

PerfFuzz: Automatically Generating Pathological Inputs ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

1 // Hash -map entry; also a linked list node ,

2 // to resolve hash collisions

3 typedef struct entry_t {

4 char* key;

5 int value;

6 struct entry_t* next;

7 } entry;

8
9 // Fixed -size table of hash -map entries.

10 const int TABLE_SIZE = 1001;

11 entry* hashtable[TABLE_SIZE] = {0};

12
13 // Computes a hash value for a word.

14 unsigned int compute_hash(char* str) {

15 unsigned int hash = 0;

16 for (char* p = str; *p != '\0'; p++) {

17 hash = 31 * hash + (*p);

18 }

19 return hash % TABLE_SIZE;

20 }

21 // Increments word count in the hash -map.

22 void add_word(char* word) {

23 // access the appropriate hashtable bucket

24 int bucket = compute_hash(word);

25 entry* e = hashtable[bucket];

26
27 // find matching entry

28 while (e != NULL) {

29 if (strcmp(e->key , word) == 0) {

30 // increment count

31 e->value ++;

32 return;

33 } else {

34 // traverse linked list

35 e = e->next;

36 }

37 }

38 // If no entry found , create one

39 hashtable[bucket] = new_entry(word , 1, hashtable[bucket]);

40 }

Figure 1: Extract from a C program that counts the frequency of words in an input string.

bytes, inserting or removing byte sequences, or extracting
random parts of another input in the set of parent inputs
and splicing it at a randomly chosen location in the parent.

(4) For each child input, run the test program and collect exe-
cution counts for each CFG edge. If the child executes some
edge more times than any other input seen so far (i.e., it
maximizes the execution count for that edge), then add it to
the set of parent inputs.

(5) Repeat from step 2 until a time limit is reached.
We walk through an execution of the PerfFuzz algorithm for

the word frequency counting program wf shown in Figure 1.
Suppose the seed input is the string "the quick brown fox

jumps over the lazy dog". This input does not have any special
characteristics that exhibit worst-case complexity. All of the 8 dis-
tinct words in this input map to distinct buckets in the hashtable,
and none are very long. PerfFuzz first runs the program with this
input and collects data about which CFG edges were executed. For
example, the function add_word is invoked 8 times, whereas the
true branch of the condition on Line 29 is executed only once to
increment the count for the word "the".

In step 2, PerfFuzz picks this input and mutates it several times.
Let us walk through a few sample mutations to observe the outcome
of each mutation.

(1) The character at position 18 is changed from o to i, yielding
the string "the quick brown fix jumps over the lazy
dog". Running the program with this input does not increase
the execution count for any CFG edge. Therefore, this input
is discarded. This is the most common outcome of mutation.

(2) The character at position 7 (the i in quick) is replaced with
a space, yielding the string "the qu ck brown fox jumps
over the lazy dog". This operation increases the number
of words, so running wfwith this input leads to an additional
execution of the function add_word. As no previous input
has executed the CFG edge that invokes this function 10 or
more times, the input is saved for subsequent fuzzing.

(3) The character at position 16 (the space between brown and
fox) is replaced with an underscore, yielding the string "the
quick brown_fox jumps over the lazy dog". The words

brown_fox and dog have the same hash value of 545, causing
a collision-resolving linked-list traversal at line 35. As this
branch is executed for the first time, this input is also saved.

Note that the last mutation, (3), actually reduces the total number
of words, and therefore the total end-to-end execution path length.
This is important, and we will return to this point later.

Newly saved inputs will be picked in the future as the parent
for subsequent mutations, and the process repeats. Inputs that
maximize the execution count of at least one CFG edge are favored;
that is, they are picked for fuzzingwith higher probability. A favored
input may cease to be favored if newer inputs are found with higher
execution counts for the same edge. The number of favored inputs
at any time is much smaller than the number of CFG edges in the
program due to correlations between execution counts of various
edges in the program—the same favored input may maximize the
execution counts of correlated CFG edges.

Most mutated inputs will not increase execution counts. How-
ever, executing a programwith a single input is a very fast operation,
even in the presence of lightweight instrumentation for collecting
profiling data. So, PerfFuzz can make steady progress in a reason-
able amount of time. For example, with our experimental setup, wf
can be executed more than 6,000 times per second on average. Thus
in one hour, PerfFuzz can go through over 20 million inputs.

After a predefined time budget expires, PerfFuzz outputs the
current favored program inputs and the execution counts for the
CFG edges that they maximize (see Table 1 for an example). For the
running example, PerfFuzz outputs strings including

"tvÇ1PFEj??A4A+v!^?^AE!§^?MPttò8dg80ÿ(8mrÿÿÿÿ",
a single long word which maximizes the execution count of Line 17
in compute_hash, as well as

"t t t t i nv t X t 1 9 t l t l t t t t t",
a string containing many short words which exercises repeated
executions of the function add_word(), and
"t <81>v ^?@t <80>!^?@t <80>!t t^Rn t t t t t t t t t",
which contains many words that hash to the same bucket as the
word "t", exposing the worst-case complexity due to repeated

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song

traversals of a long linked list. Section 5.1.2 describes in detail the
results of running PerfFuzz on wf-0.41.

An important feature of PerfFuzz is that it saves mutated inputs
if they maximize the execution count for any CFG edge, even if
the mutation reduces the total execution path length. This is in
contrast to previous tools which use a greedy approach and con-
sider only increases in total path length [49]. This feature helps
PerfFuzz find inputs exercising worst-case behavior even when the
performance response of the program is non-convex. For example,
finding inputs with many hash collisions in the example above usu-
ally requires reducing the total path length when discovering the
first few collisions—refer to mutation 3. But, the total path length
becomes much larger once multiple collisions are found due to
the quadratic increase in the number of linked-list node traversals.
Empirical results in Section 5.1.2 support the importance of this
multi-objective approach.

3 THE PERFFUZZ ALGORITHM

We now describe the PerfFuzz technique formally. Algorithm 1
outlines the high-level input generation strategy. The high-level
algorithm is based on the coverage-guided greybox fuzzer AFL [60].

The goal of PerfFuzz is to generate inputs which achieve high
performance values associated with some program components. To
generate inputs exhibiting high computational complexity, we take
the program components to be CFG edges and the values to be their
execution counts. The PerfFuzz algorithm can be easily adapted
to maximize a variety of values for different program components:
the number of bytes allocated at malloc statements, the number of
cache misses or page faults at memory load/store instructions, the
number of I/O operations across system components, etc.

PerfFuzz is given a program, p, and a set of initial seed inputs
(Seeds). These seed inputs are used to initialize a set of parent inputs,
denoted P (Line 1). Inputs in set P form the base from which new
inputs are generated via mutation.

PerfFuzz then considers each input from the set P (Line 4) and
probabilistically decides whether or not to select that input for
mutational fuzzing (Line 5). The selection probability fuzzProb is
1 for an input that is currently favored (maximizes a performance
value, detailed in Definition 5) and low otherwise.

Each time a parent input is chosen for fuzzing, PerfFuzz deter-
mines a number of new child inputs to generate (Line 6). It generates
these children by mutating the chosen parent input (Line 7). The
number of child inputs produced and the mutation operations used
to produce them are implementation-specific heuristics, which we
borrow from AFL (see Section 4).

PerfFuzz then executes the program under test with every newly
generated child input (Line 8). During the execution, PerfFuzz
collects feedback which includes code coverage information (e.g.,
which CFG edges were executed) as well as values associated with
the program components of interest (e.g., how many times each
CFG edge was executed). If an execution results in new code cov-
erage (newCov) or if it maximizes the value for some component
(newMax), then the corresponding input is added to the set of par-
ent inputs for future fuzzing (Line 10). Saving inputs which explore
new coverage is key to exploring different program behavior when

Algorithm 1 The PerfFuzz algorithm
Inputs: program p, set of inputs Seeds

1: P ← Seeds
2: t ← 0
3: repeat ▷ begin a cycle
4: for input in P do

5: with probability fuzzProb(input) do
6: for 1 ≤ i ≤ numChildren(p, input) do
7: child← mutate(input)
8: feedback← run(p, child)
9: if newCov(feedback) ∨ newMax(feedback) then
10: P ← P ∪ {child}
11: t ← t + 1
12: until given time budget expires

the program component, performance value pairs to be maximized
are not simply CFG edges and their hit counts.

Once PerfFuzz completes a full cycle through the setP, it simply
repeats this process until a given time budget expires (Line 12).

We now define a series of concepts that are required to precisely
describe what it means for an input to maximize a value associated
with a program component (i.e., satisfy newMax) and for an input
to be favored.

Definition 1. A performance map is a function perfmap : K → V ,
where K is a set of keys corresponding to program components
and V is a set of ordered values (≤) corresponding to performance
values at these components.

Given a K and V , perfmapi is the performance map derived
from the execution of input i on program p. As outlined in the
beginning of this section, the sets K andV have deliberately been
left abstract to make the algorithm flexible to different program
component, performance value pairs.

Definition 2. The cumulative maximum map at time step t is a
function cumulmax t : K → V . It maps each program component
to the maximum performance value observed for that component
across all inputs generated up to time t . Precisely, if It is the cumu-
lative set of inputs executed up to time step t , then:

∀k ∈ K : cumulmax t (k) = max
i ∈It

perfmapi (k).

Now we can get to the fundamental concepts which allow Perf-
Fuzz to achieve its testing goal.

Recall from Line 10 that PerfFuzz adds an input to P if it
achieves a new maximum or if it achieves new coverage. We will
discuss the notion of coverage in Section 4, as it is implementation-
specific. The first key to the PerfFuzz algorithm is saving inputs
which achieve a new maximum compared to previously observed
values. In terms of cumulmax , an input has a new maximum if:

Definition 3. The function newMax will return true for a newly
generated input i at time step t if the following condition holds:

∃k ∈ K s.t. perfmapi (k) > cumulmax t (k).

The second key to the PerfFuzz algorithm is the selection of
inputs from P to mutate. To define the selection probability of an
input, fuzzProb, we must first define the concept of favoring.

PerfFuzz: Automatically Generating Pathological Inputs ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Definition 4. An input i maximizes a performance value for some
component k if and only if its performance profile registers the
maximum value observed for that component so far:

maximizest (i,k) ⇔ perfmapi (k) = cumulmax t (k).

Definition 5. An input i is favored for fuzzing at time step t if and
only if it maximizes a performance value for some component:

favoredt (i) ⇔ ∃k ∈ K s. t. maximizest (i,k)

The favoring mechanism is a heuristic that allows PerfFuzz to
prioritize fuzzing those inputs that maximize the performance value
of some program component. The intuition behind this is that these
inputs contain some characteristics that lead to expensive resource
usage in some program components. Thus, new inputs derived from
them may be more likely to contain the same characteristics. With
this, we can define the probability that an input will be selected as
a parent for fuzzing:

Definition 6. The selection probability of an input i at time t is:

fuzzProbt (i) =

{
1 if favoredt (i)
α otherwise

.

That is, favored inputs are always selected, and α is the proba-
bility of selecting a non-favored input. In our experiments we use
α = 0.01.

4 IMPLEMENTATION

In this section, we fill in some concrete implementation details
that were omitted in the general algorithmic description. PerfFuzz
is built on top of American Fuzzy Lop (AFL) [60], a state-of-the-
art coverage-guided mutational fuzzing engine. As such, many
implementation details are inherited from AFL.

Choosing the number of child inputs to produce (Line 6 in Algo-
rithm 1). To determine the number of children to produce from
a parent input, PerfFuzz uses the same heuristics as AFL. These
heuristics include producing more children for inputs that have
wider code coverage or are discovered later in the fuzzing process.

Mutating inputs (Line 7 inAlgorithm 1). PerfFuzz has no domain-
specific knowledge of input structure: it simply views inputs as
sequences of bytes. Thus, the mutation strategies that PerfFuzz
uses work at the byte-sequence level. These strategies are the same
as those performed by AFL. In particular, in our evaluation, Perf-
Fuzz performs only havoc mutations, which work as follows.

Let i be the parent input. Choose a number, m, of mutations
to apply (m is chosen randomly from powers of two between 2
and 128) . Then, from i0 = i , produce a series of mutated inputs
i j = mutate_once(i j−1). The final mutated input is i ′ = im , which
is returned to the main fuzzing loop in Line 7 of Algorithm 1 for
program execution. The function mutate_once chooses a random
1-step mutation and applies it to the input it is given. The mutations
applied by mutate_once include, amongst others
• Bitflips/byteflips at random locations.
• Setting bytes to random or interesting (0, MAX_INT) values
at random locations.
• Deleting/cloning blocks of bytes.

PerfFuzz also retains AFL’s input-splicing mutations stage, more
commonly called a crossover mutation. For a parent input i , a splic-
ing mutation chooses a random input i ′ in P and pastes a random
sub-sequence from i ′ at a random offset in i . This stage runs only
when PerfFuzz has not recently discovered new coverage or maxi-
mizing inputs.

New program coverage. As illustrated in Line 9 of Algorithm 1,
PerfFuzz saves inputs that have new maxima (Definition 3) as well
as those that achieve new code coverage. In our implementation,
PerfFuzz uses the same new coverage definition of AFL, which
works as follows.

AFL inserts instrumentation into the program that assigns a
pseudo-unique ID to every edge in the control-flow graph (CFG)
of the program. During program execution, the instrumentation
uses an 8-bit counter to keep track of the number of times that each
CFG edge was traversed. AFL simplifies the hit counts of each CFG
edge into one of 8 buckets: hit 1 time, 2 times, 3 times, 4–7 times,
8–15 times, 16–31 times, 32–127 times, or 128–255 times. Then, an
input has new coverage if it either:

• visits a new CFG edge, or
• hits a known CFG edge a new bucketed number of times.

This bucketing strategy is an “implementation artifact” [61], which
allows AFL to quickly calculate major differences in coverage. As
this definition of new coverage has had success in the past, we did
not seek to modify it.

Note that with this definition, an input that achieves new cov-
erage may not have a new maximum and vice versa. For example,
let e represent a CFG edge. An input hitting e 10 times when e has
only been hit 20 times by previously generated inputs achieves new
coverage but not a new maximum. On the other hand, an input
hitting e 190 times when e has already been hit 130 times achieves
a new maximum but not new coverage.

Performance map. In our current implementation, the perfor-
mance map sent back to the program has K = E ∪ {total} and
V = N, where E is the program’s set of CFG edges and total is an
additional key. For an input i , for each e ∈ E, perfmapi (e) is the
total number of times the program executes e when run on input i ,
and perfmapi (total) =

∑
e ∈E perfmapi (e). The purpose of the total

key is to save inputs which have high total path length.
To produce this performance map, we simply augmented AFL’s

LLVM-mode instrumentation, which inserts the coverage instru-
mentation described above into LLVM IR. Our augmented instru-
mentation still creates the usual coverage map, whose keys are in
E and whose values are their 8-bit hit counts. Additionally, our
augmented instrumentation creates the performance map outlined
above, with values as 32-bit integers.

5 EVALUATION

In our evaluation of PerfFuzz, we seek to answer the following
research questions:

RQ1. How does PerfFuzz compare to single-objective complexity
fuzzing techniques such as SlowFuzz [49]?

RQ2. Is PerfFuzz more effective at finding pathological inputs
than fuzzing techniques guided only by coverage?

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song

RQ3. Does the multi-dimensional objective of PerfFuzz help find
a range of inputs that exercise distinct hot spots?

We chose four real-world C programs as benchmarks for our
main evaluation: (1) libpng-1.6.34, (2) libjpeg-turbo-1.5.3,
(3) zlib-1.2.11, and (4) libxml2-2.9.7. We chose these bench-
marks as they are (a) common benchmarks in the coverage-guided
fuzzing literature (b) fairly large—from 9k LoC for zlib and 30k
LoC for libpng and libjpeg, to 70k LoC for libxml—and (c) had
readily-available drivers for libFuzzer, an LLVM-based fuzzing
tool [4]. The availability of good libFuzzer drivers was key to
being able to fairly compare PerfFuzz to SlowFuzz [49] in Sec-
tion 5.1. While AFL-based tools need only a program that accepts
standard input or an input-file name, libFuzzer-based tools rely
on a specialized driver that directly takes in a byte array, does
not depend on global state, and never exits on any input. Creating
drivers with this second characteristic from command-line pro-
grams is especially tricky. The particular drivers we chose (from
the OSS-fuzz project [7]) exercised the PNG read function, the JPEG
decompression function, the ZLIB decompression function, and the
XML read-from-memory function.

For each of these benchmarks, we ran PerfFuzz (and the tools
with which we compare it) for 6 hours on a maximum file size of
500 bytes. AFL ships with sample seed inputs in formats including
PNG, JPEG, GZIP and XML; we simply used the same inputs as
seeds for our evaluation. We chose the maximum size of 500 bytes
as it was an upper bound on all the seeds that we considered. As
the fuzzing algorithm used by PerfFuzz as well as other tools is
non-deterministic, we repeated each 6-hour run 20 times to account
for variability in the results.

For our evaluation on discovering worst-case algorithmic com-
plexity as a function of varying input sizes (Section 5.1.2), we used
three micro-benchmarks: (1) insertion sort (because it was provided
as the default example in the SlowFuzz repository), (2) matching
an input string to a URL regex [17] using the PCRE library, and (3)
wf-0.41 [6], a simple word-frequency counting tool found in the
Feodra Linux repository.

To evaluate PerfFuzz against other techniques, we measure one
or both of the maximum path length and the maximum hot spot,
where appropriate. More precisely, if E is the set of CFG edges in
the program under test, and It is the set of inputs generated by a
fuzzing tool up to time t , then:

Definition 7. The maximum path length is the longest execution
path across all inputs generated so far.

max. path length = max
i ∈It

∑
e ∈E

perfmapi (e).

Definition 8. The maximum hot spot is the highest execution
count observed for any CFG edge across all inputs generated so far.

max. hot spot = max
i ∈It

max
e ∈E

perfmapi (e).

These two values allow us to get a grasp of the overall computa-
tional time complexity of generated inputs (the path length) as well
as whether it is driven by a particular program component (the hot
spot) without having to look at the entire distribution of execution
counts of CFG edges, which is not practical to do over time.

5.1 Comparison with SlowFuzz

SlowFuzz [49] is a fuzz testing tool whose main goal is to produce
inputs triggering algorithmic complexity vulnerabilities. Like Perf-
Fuzz, SlowFuzz is also an input-format agnostic fuzzing tool for
C/C++ programs; therefore, we believe it is the most closely related
work to practically compare against.

The objective of SlowFuzz is one-dimensional: to maximize the
total execution path length for a program. As such, it serves as
an important candidate for evaluating the coverage-guided multi-
objective maximization of PerfFuzz against a traditional single-
objective technique.

There are two other main algorithmic differences between Slow-
Fuzz and PerfFuzz. First, PerfFuzz produces many (typically at
least thousands, often tens of thousands) of inputs from one chosen
parent input (Line 6 of Algorithm 1). SlowFuzz instead produces one
mutant for each parent. This reduces the importance of selecting
inputs to fuzz. Thus, while PerfFuzz prioritizes inputs to fuzz using
the concept of favored inputs (Line 5 of Algorithm 1), SlowFuzz
randomly selects a parent input to fuzz. Second, PerfFuzz applies
AFL’s havoc mutations (as detailed in Section 4) to the input. Slow-
Fuzz learns which mutations were successful in producing slow
inputs in the past, and applies these more often.

Finally, SlowFuzz is built on top of on libFuzzer [4], an LLVM-
based fuzzing tool. In practice, libFuzzer is faster than AFL, run-
ning more inputs through the program per second; therefore, Slow-
Fuzz usually produces more inputs than PerfFuzz in the same time
span. Nonetheless, in our evaluation, we run both PerfFuzz and
SlowFuzz for the same amount of time.

We compare PerfFuzz with SlowFuzz on two fronts. First, we
evaluate PerfFuzz and SlowFuzz on their ability to maximize total
execution path lengths as well as the maximum hot spot on the
four macro-benchmarks described above. Second, we compare the
ability of PerfFuzz and SlowFuzz to find inputs that demonstrate
worst-case algorithmic complexity in micro-benchmarks which are
known to have worst-case quadratic complexity.

In all runs of SlowFuzz, we used the arguments provided in
the example directory, except that we used the “hybrid” mutation
selection strategy. This was the strategy used in SlowFuzz’s own
evaluation [49], and we found that it performed best on a selection
of micro-benchmarks in our initial experiments.

5.1.1 Maximizing Execution Counts. Figure 2 shows the progress
made by PerfFuzz and SlowFuzz during 6-hour runs in maximiz-
ing total path length (on the left) and the maximum hot spot (on
the right). The lines in the plot represent average values over 20
repeated 6-hour runs, while the shaded areas represent 95% confi-
dence intervals, calculated with Student’s t-distribution.

It is clear from Figure 2 that PerfFuzz consistently finds inputs
that are significantly worse-performing than SlowFuzz’s by both the
evaluated metrics—the maximum path lengths found by PerfFuzz
are 1.9×–24.7× higher and the maximum hot spots are 5×–69×
higher. This is in spite of the fact that SlowFuzz produces more
inputs in each of this 6-hour runs (from 1.7× more for libxml2 to
17.7× more for libjpeg-turbo).

The results show that not only is PerfFuzz better than SlowFuzz
at finding hot spots, for which the PerfFuzz algorithm is tailored,
but that PerfFuzz is superior to SlowFuzz even for finding inputs

PerfFuzz: Automatically Generating Pathological Inputs ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

0 2 4 6
Time (hrs)

0k

1000k

2000k

3000k

4000k

5000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(a) libpng - max. path length

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(b) libpng - max. hot spot

0 2 4 6
Time (hrs)

0k

500k

1000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(c) libxml2 - max. path length

0 2 4 6
Time (hrs)

0k

100k

200k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(d) libxml2 - max. hot spot

0 2 4 6
Time (hrs)

0k

2000k

4000k

6000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(e) libjpeg - max. path length

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(f) libjpeg - max. hot spot

0 2 4 6
Time (hrs)

0k

10k

20k

30k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(g) zlib - max. path length

0 2 4 6
Time (hrs)

0k

5k

10k

15k

20k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(h) zlib - max. hot spot

Figure 2: PerfFuzz vs. SlowFuzz on macro-benchmarks:

maximum path length and maximum hot spot found

throughout the duration of the 6-hour fuzzing runs. Lines

and bands show averages and 95% confidence intervals

across 20 repetitions; higher is better.

that maximize total path length, for which SlowFuzz is tailored.
Intuitively, we believe that this is because the total path length is
not a convex function of input characteristics; a greedy approach to
maximizing total path length is likely to get stuck in local maxima.
In contrast, PerfFuzz saves newly generated inputs even if the total
path length is lower than the maximum found so far, as long as
there is an increase in the execution count for some CFG edge. Thus,
the multi-dimensional objective of PerfFuzz allows it to perform
better global maximization of total path lengths.

5.1.2 Algorithmic Complexity Vulnerabilities. SlowFuzz was de-
signed to find algorithmic complexity vulnerabilities, where pro-
grams exhibit worst-case behavior that is asymptotically worse
than their average-case behavior. Such programs pose a security
risk if they process untrusted inputs: an attacker can send carefully

10 20 30 40 50 60
Max Input Length (bytes)

0

1000

2000

3000

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(a) Insertion Sort

10 20 30 40 50 60
Max Input Length (bytes)

100k

200k

300k

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(b) PCRE URL regex

10 20 30 40 50 60
Max Input Length (bytes)

100

200

300

400

500

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(c) wf

Figure 3: PerfFuzz vs. SlowFuzz on micro-benchmarks:

maximum path length found with given time budget, for

varying input sizes; higher is better.

crafted inputs that exercise worst-case complexity and exhaust the
victim’s computational resources, resulting in a Denial-of-Service
(DoS) attack [23]. We now show that PerfFuzz can also address
this use case, and in fact can out-perform SlowFuzz in some cases.

We considered three micro-benchmarks: (1) insertion sort on
an array of 8-bit integers, which is the only benchmark provided
in the SlowFuzz repository, (2) matching an input string against a
regular expression to validate URLs using the PCRE library, and (3)
wf-0.41, the word-frequency counting program from the Fedora
Linux repository. These benchmarks are very similar to those used
to evaluate SlowFuzz. Each of these micro-benchmarks have an
average-case run-time complexity that is linear in the size of the
input, and a worst-case complexity that is quadratic.

For each of these benchmarks, we varied the upper bound on
the input size between 10 and 60 bytes with 10-byte intervals. We
then ran each tool on the micro-benchmarks for a fixed duration:
10 minutes for insertion sort and 60 minutes for PCRE and wf.
In all cases, we provided a single input seed: a sequence of zero-
valued bytes of maximum length for insertion sort and PCRE (these
represent trivial base cases), and (truncations of) the string “the
quick brown fox jumps over the lazy dog” for wf, as it leads to
average-case performance. For each input length, we performed 20
runs to account for variability. Finally, we measured the maximum
path length observed over all the inputs produced in these runs.

Figure 3 shows the results of these runs: points plot the average
maximum path length, while lines show 95% confidence intervals.

For insertion sort, for all input lengths, PerfFuzz found a sig-
nificantly (at 95% confidence) longer maximum path length, but as
Figure 3a shows, the difference is minimal for small input lengths.
For input lengths 10 and 20, PerfFuzz consistently found the worst-
case—a reverse-sorted list—while SlowFuzz had non-zero variance
in its results. Figure 3a also shows that for larger input sizes, Perf-
Fuzz finds lists that require more comparisons to sort than Slow-
Fuzz. Overall, both tools discover the worst-case quadratic time
complexity for this benchmark.

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song

However, in Figure 3b we see a major difference between the
worst-case inputs found by PerfFuzz and SlowFuzz on the PCRE
URL benchmark. PerfFuzz finds inputs that lead to worst-case
quadratic complexity, while SlowFuzz finds only a slight super-
linear curve. An example of an input found by PerfFuzz that had
maximum path length in one of the 50-byte runs was:

fhftp://ftp://ftp://ftp://f.m.m.m.m.m.m.m.m.m.m.

This is remarkable because the seed input was an empty string
and PerfFuzz was not provided any knowledge of the syntax of
URLs. On the other hand, SlowFuzz has difficulty in automatically
discovering substrings such as ftp in the input string. We sus-
pect that this is because of its one-dimensional objective function,
which does not allow it to make incremental progress in the regex
matching algorithm unless there is an increase in total path length.
Additionally, Figure 3b shows that there is much more variance in
SlowFuzz’s performance (see large confidence intervals for length
50 and 60) on this benchmark, indicating that any such progress
likely relies on a sequence of improbable random mutations.

wf is a much harder benchmark, as the worst-case behavior
is only triggered when distinct words in the input string map to
the same hash-table bucket (ref. Section 2). Figure 3c shows that
PerfFuzz clearly finds inputs closer to worst-case time complexity
in the given time budget. We noticed that in nearly all runs (i.e., 19
of the 20 runs for 60-byte inputs), PerfFuzz produced inputs with
a very peculiar structure: first a few distinct words with the same
hash code, then a single 1-letter word repeated multiple times. For
example, PerfFuzz generated this input in one of its runs:
t <81>v ^?@t <80>!^?@t <80>!t t^Rn t t t t t t t t t

What is amazing about this input is how precisely it exercises
worst-case complexity. First, a small word is inserted into some
hash bucket. Then, the next few words have the exact same hash
code and are inserted at the front of the linked list in that bucket;
the first word is now the last node in this linked list. Finally, the
repeated occurrences of the first word cause wf to traverse the entire
linked list multiple times. The worst inputs produced by SlowFuzz
had some hash collisions, but still had several different hash codes
and no traversal-stressing structure like the input above.

Overall, we see that in the same time constraints, PerfFuzz is
able to find inputs with significantly longer paths than SlowFuzz,
and can out-perform SlowFuzz in discovering inputs exercising
near worst-case algorithmic complexity.

5.2 Comparison with Coverage-Guided Fuzzing

With the insight that PerfFuzz’s efficacy is in part due to its multi-
objective. coverage-guided progress, we ask whether PerfFuzz
performs better than just AFL off-the-shelf. To evaluate this as-
pect, we ran AFL on our four C macro-benchmarks. Like PerfFuzz,
AFL was configured to use only havoc mutations (-d option), be-
cause this configuration has been shown to result in faster program
coverage [62]. This experiment tests the value-add of PerfFuzz’s
performance maps and maximizing-input favoring heuristics.

We begin by looking at the evolution of the maximum hot spot
found by each technique through time, shown in Figure 4. For the
libpng, libjpeg-turbo, and zlib benchmarks (Figures 4a, 4c, 4d),
we see that PerfFuzz rapidly finds a hot spot with a significantly
higher execution count. For the libxml2 benchmark (Figure 4b),

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(a) libpng

0 2 4 6
Time (hrs)

0k

50k

100k

150k

200k

250k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(b) libxml2

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(c) libjpeg

0 2 4 6
Time (hrs)

0k

5k

10k

15k

20k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(d) zlib

Figure 4:PerfFuzz vs. AFL: Time evolution of themaximum

hot spot through the 6-hour runs. Lines and bands show av-

erages and 95% confidence intervals across 20 repetitions.

Higher is better.

0 50 100 150 200
CFG Edge

0k

500k

1000k

1500k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(a) libpng

0 10 20 30 40
CFG Edge

0k

100k

200k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(b) libxml2

0 100 200 300
CFG Edge

0k

500k

1000k

1500k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(c) libjpeg-turbo

0 20 40 60
CFG Edge

0k

5k

10k

15k

20k
M

ax
im

um
 E

xe
cu

tio
n

Co
un

t
PerfFuzz
AFL

(d) zlib

Figure 5: Distribution of maximum execution counts across

CFG edges, as found by by PerfFuzz and AFL after 6-hour

runs. Plots show median values of this measurement across

20 repetitions.

AFL initially finds a hot spot with higher execution count, but
quickly plateaus. On the other hand, PerfFuzz finds a hot spot
with over 2× higher execution count after 6 hours. Overall, Fig-
ure 4 demonstrates that PerfFuzz’s performance-map feedback has
a significant effect on its ability to generate pathological inputs,
exercising hot spots with 2×–18× higher execution counts.

Figure 4 shows only the execution counts for the maximum hot
spot, as this is easy to visualize through time. However, we were
curious as to whether the maximum execution counts found by
PerfFuzz are significantly higher than those found by AFL over all
hot spots in the program. Figure 5 provides this information.

PerfFuzz: Automatically Generating Pathological Inputs ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 1: A snapshot of the output of PerfFuzz after one 6-hour run on libpng. For each of 3 favored inputs, the table shows

the top 3 CFG edges—represented by start and end line numbers—by their execution count.

Input #9189 Input #10520 Input #10944

Exec. count CFG edge Exec. count CFG edge Exec. count CFG edge

2,071,824 pngrutil.c:3715->3715 289,536 pngrutil.c:3842->3842 225,489 pngread.c:387->396
274,212 pngrutil.c:3715->3712 144,536 pngrutil.c:3416->3419 225,489 pngread.c:405->456
274,178 pngrutil.c:3712->3715 144,536 pngrutil.c:3419->3404 225,489 pngread.c:456->459

In particular, Figure 5 shows the maximum execution count
per CFG edge found by each technique at the end of the 6 hour
runs. We plot the median of this measure across the 20 repeated
runs. For clarity, we sort the CFG edges by the counts achieved
by PerfFuzz and truncate the data to show only those edges with
execution counts within 2 orders of magnitude of the maximum
hot spot found by PerfFuzz. The omitted tails of the distributions
are indistinguishable. Figure 5 confirms that PerfFuzz’s gains are
not limited to only the maximum hot spot in the program. Across
the four benchmarks, there are 453 of the plotted edges which
PerfFuzz-generated inputs exercise over 2x more times than AFL-
generated inputs, and 238 edges which PerfFuzz-generated inputs
exercise over 10x more times.

5.3 Case Studies

PerfFuzz is designed to generate inputs that demonstrate patholog-
ical behavior in programs across different program components (in
this evaluation, CFG edges). In Section 5.1.2 we saw that the inputs
generated by PerfFuzz exercised close-to worst-case algorithmic
complexity on micro-benchmarks. We decided to manually analyze
the inputs generated by PerfFuzz—in a single run each—on the
four macro-benchmarks to see where the hot spots were located
and how different input characteristics affected these hot spots.

At the end of each run, PerfFuzz outputs its set of favored
inputs—those that maximize the execution count of at least one
CFG edge—as well as the execution counts for each CFG edge that it
maximizes. Table 1 shows an example of this output: it is a snippet
from the results obtained from one run of PerfFuzz on the libpng
benchmark, showing the top 3 CFG edges by execution count for
the top 3 favored inputs.

libpng. From Table 1, we can directly look at the source code
locations to see which features each input exercises. This alone al-
ready highlights different hot spots in the code. For illustration, we
look at a snippet from pngrutil.c in Figure 6, which shows an ex-
cerpt from a function that performs PNG interlacing. The argument
row_info contains data parsed from the input file. This snippet of
code shows two distinct hot spots—sets of input-dependent nested
loops—guarded by a switch on an input characteristic. Therefore,
these hot spots can only be exercised by distinct inputs. As illus-
trated in Table 1, input #9189 maximizes the number of executions
of the inner loop when pixel depth is 1 (Line 3715 of Figure 6),
corresponding to a monochrome image. Input #10520, on the other
hand, maximizes executions of the inner loop for a pixel depth of 4
(Line 3842 of Figure 6), corresponding to an image segment with
16 color-palette entries. Other inputs stress completely different
parts of the code. For example, input #10944 from Table 1 maxi-
mizes execution counts for CFG edges in a loop whose bounds are

void png_do_read_interlace(png_row_infop row_info , ...) {

...

switch (row_info -> pixel_depth) {

case 1:

{

for (i = 0; i < row_info ->width; i++)

3715: for (j = 0; j < jstop; j++)

...

}

...

case 4:

{

for (i = 0; i < row_info ->width; i++)

3842: for (j = 0; j < jstop; j++)

...

}

}

}

Figure 6: Snippet from pngrutil.c showing hot spots which

can only be exercised by inputs with distinct features.

proportional to the height of the PNG image, as declared in the
PNG header: each iteration processes one row of pixels at a time.

From a quick glance at just three favored inputs, we can see that
PerfFuzz has enabled us to discover some of the key features which
have an effect on the performance of parsing a PNG image indepen-
dent of the file size, such as the image’s geometric dimensions and
color depths declared in the header. We repeat this exercise for the
other benchmarks, but omit the actual outputs and code snippets
from the paper for brevity.

libjpeg-turbo. In the libjpeg benchmark, we saw a similar
distribution of inputs where the hot spots were related to JPEG im-
age properties. For example, one input’s hot spot was in processing
for an image with 4 : 4 : 0 chroma sub-sampling; the input also had
a huge number of columns. Other inputs stressed various points in
the arithmetic decoding algorithms. PerfFuzz discovered inputs
that stressed processing for both one-pass and multi-pass images.

zlib. Compared to image formats, the functionality of the zlib
decompressor is relatively straightforward. This was reflected by
the fact that there were very few edges exercised a huge number
of times; that is, there were fewer hot spots. Nonetheless, Perf-
Fuzz discovered an input with a compression factor of nearly 126×,
whose processing lead to a long execution path.

libxml. The inputs produced by PerfFuzz for the libxml2
benchmark revealed what appears to be quadratic complexity in
the parsing process. The largest hot spot was the traversal of the
characters of a string in a string-duplication function. For a 500 byte
input, there were 226,512 iterations of this loop. By running the

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song

input, it was quickly apparent that the source of this quadratic com-
plexity came from repeatedly printing out the context of errors in
the input. Naturally, inputs generated by random mutation are not
well-formed XML files. In fact, these inputs had so many errors that
they caused the same work—printing the error context—to be done
over and over again. PerfFuzz also stressed error handling code
that repeatedly traversed the input backwards to check whether a
parent tag had a given name-space; essentially, PerfFuzz learned to
produce errors deep in the XML tree, causing pathological behavior.

These case studies indicate that the inputs generated by Perf-
Fuzz lead to non-trivial hot spots being uncovered. The inputs
generated for libxml2 also reveal potential inefficiencies in the
program performance. Overall, this analysis suggests that Perf-
Fuzz successfully produces inputs that stress various program func-
tionalities, and may be useful by themselves or as references for
creating performance tests on these benchmarks.

6 THREATS TO VALIDITY

Like many other input generation techniques founded in a ge-
netic algorithm-style model, PerfFuzz relies solely on heuristics
to produce inputs that achieve its testing goal, which is to exer-
cise pathological program behaviors. In combination with the fact
that PerfFuzz is a dynamic technique, this means that PerfFuzz is
not guaranteed to find all hot spots in a program or the absolute
worst-case behavior for each hot spot it discovers.

In this paper, we focused on discovering bottlenecks due to
increase in computational complexity; therefore, we measure ex-
ecution counts of CFG edges instead of total running time. This
helps ensure that our measurements are accurate and determinis-
tic, but also means that the identified bottlenecks may not be the
points in which the program spends the most time. This gap could
be mitigated by using a different cost model for CFG edges, i.e. to
find bottlenecks due to other factors such as I/O operations. While
PerfFuzz supports different cost models, we have not performed
an empirical evaluation with other types of performance feedback.

Finally, we believe that the reason that PerfFuzz outperforms
greedy techniques such as SlowFuzz is due to the ability to over-
come local maxima in a non-convex performance space. Although
we have anecdotal evidence to back this intuition, such as the ob-
servations with the wf tool described in Section 2, we have not
mapped the performance spaces of our benchmarks to measure
their convexity. Doing this would require searching through all
possible mutations from each generated input, which is infeasible.

7 RELATEDWORK

Apart from SlowFuzz [49], which we have thoroughly evaluated,
the tools most similar to PerfFuzz include FOREPOST [33, 41]
and GA-Prof [53]. These automatically discover inputs that reveal
performance bottlenecks in software, using repeated executions of
the test program with candidate inputs. FOREPOST learns rules
to select a subset of inputs from a known input space (e.g. a data-
base of records) using unsupervised learning. GA-Prof employs a
genetic algorithm, where highly-structured inputs (such as a set of
URLs in a transaction) are encoded as genes. In contrast, PerfFuzz
requires no domain knowledge since its inputs are represented as
byte sequences. PerfFuzz’s coverage-guided feedback allows it to

automatically discover variety in the input space in order to explore
deep program functionality.

Search-based software testing (SBST) [35, 36, 42, 59] leverages
optimization techniques such as hill climbing to optimize an ob-
jective function. These techniques work well when the objective
function is a smooth function of the input characteristics. This is
not the case for the general-purpose programs, which are the main
targets of PerfFuzz.

Another popular input-generation technique is dynamic sym-
bolic execution (DSE) [8, 11, 18, 21, 29, 30, 40, 52, 55], also known
as concolic testing. DSE uses constraint solvers [24] to generate
inputs that excercise a given program path. WISE [16] uses DSE to
generate inputs that exercise worst-case behavior. This requires an
exhaustive search of all program paths to find the longest path up to
a bounded input length. Thus, WISE does not scale to large complex
programs. PerfPlotter [20] addresses this concern by probabilisti-
cally selecting paths to explore, using heuristics to find best-case
and worst-case execution paths. Zhang et al. [65] automatically
generate load tests using mixed symbolic execution and iterative-
deepening beam search. These tools are designed to maximize a
single-dimensional objective function (e.g., total path length, total
memory consumption). Unlike PerfFuzz, they may not generate a
variety of inputs that exercise distinct hot spots in a program.

SpeedGun [50] automatically generates multi-threaded perfor-
mance regression tests that find bottlenecks due to synchronization.
SpeedGun’s input space is quite different, as it generates sequences
of method calls in a Java class. On the other hand, PerfFuzz does
not specifically handle concurrent programs. PerfSyn [56] mutates
Java programs to expose bottlenecks in a particular method.

Crosby and Wallach were the first to demonstrate denial-of-
service (DoS) attacks that exploit algorithmic complexity vulner-
abilities [23]. Subsequent work on detecting and preventing DoS
attacks [9, 25, 64] has typically focused on measuring aggregate
resource exhaustion and does not specifically identify input char-
acteristics that exploit worst-case algorithmic complexity.

Input-sensitive profiling techniques [22, 31, 63] help estimate the
algorithmic complexity of a program function empirically by pro-
filing its execution under varying input sizes. However, such tech-
niques require available inputs. Some previous work has focused
on identifying redundant traversals of data-structures [45, 46, 48],
a special class of algorithmic complexity bugs. Although these tech-
niques help pin-point program locations that may contain complex-
ity bugs, they do not generate the offending inputs automatically.

Researchers in the real-time and embedded systems community
have developed methods to estimate Worst-Case Execution Time
(WCET) or to prove that a program’s WCET does not exceed speci-
fied bounds [10, 14, 26, 34, 57]. However, many of these methods
require knowledge of loop bounds in the form of manually provided
annotations or programming language restrictions. These methods
do not easily apply to arbitrary C programs such as the benchmarks
we evaluated in this paper. Further, these methods do not generate
the concrete inputs that demonstrate worst-case behavior.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants CCF-1409872 , CCF-
1423645 and TWC-1409915, as well as DARPA FA8750-15-2-0104.

PerfFuzz: Automatically Generating Pathological Inputs ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES

[1] 2011. CVE-2011-3414. Available from MITRE. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2011-3414

[2] 2011. CVE-2011-4858. Available from MITRE. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2011-4858

[3] 2014. CVE-2014-5265. Available from MITRE. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-5265

[4] 2016. libFuzzer. http://llvm.org/docs/LibFuzzer.html. Accessed Jan 2018.
[5] 2017. CVE-2017-9804. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2017-9804
[6] 2017. wf - Simple word frequency counter. https://fedora.pkgs.org/27/

fedora-x86_64/wf-0.41-16.fc27.x86_64.rpm.html Accessed Jan 2018.
[7] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith

Whittaker. 2016. Announcing OSS-Fuzz: Continuous Fuzzing for Open Source
Software. https://github.com/google/oss-fuzz. Accessed Jan 2018.

[8] Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-driven
Compositional Symbolic Execution. In Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin,
Heidelberg, 367–381. http://dl.acm.org/citation.cfm?id=1792734.1792771

[9] João Antunes, Nuno Ferreira Neves, and Paulo Jorge Veríssimo. 2008. Detection
and prediction of resource-exhaustion vulnerabilities. In 2008 19th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 87–96.

[10] Robert Arnold, Frank Mueller, David Whalley, and Marion Harmon. 1994. Bound-
ing worst-case instruction cache performance. In Real-Time Systems Symposium,
1994., Proceedings. IEEE, 172–181.

[11] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.
Enhancing Symbolic Execution with Veritesting. In Proceedings of the 36th Inter-
national Conference on Software Engineering (ICSE 2014). ACM, New York, NY,
USA, 1083–1094.

[12] Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In Proceedings of
the 29th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO
29). IEEE Computer Society, Washington, DC, USA, 46–57. http://dl.acm.org/
citation.cfm?id=243846.243857

[13] Thomas Ball, Peter Mataga, and Mooly Sagiv. 1998. Edge Profiling Versus Path
Profiling: The Showdown. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’98). ACM, New York,
NY, USA, 134–148. https://doi.org/10.1145/268946.268958

[14] Guillem Bernat, Antoine Colin, and Stefan M Petters. 2002. WCET analysis of
probabilistic hard real-time systems. In Real-Time Systems Symposium, 2002. RTSS
2002. 23rd IEEE. IEEE, 279–288.

[15] Sergey Bratus, Axel Hansen, and Anna Shubina. 2008. LZfuzz: a fast compression-
based fuzzer for poorly documented protocols. Technical Report. Department of
Computer Science, Darmouth College.

[16] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. 2009. WISE: Automated Test
Generation for Worst-Case Complexity. In Proceedings of the 31st International
Conference on Software Engineering.

[17] Mathias Bynens. 2014. In search of the perfect URL validation regex. https:
//mathiasbynens.be/demo/url-regex.

[18] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08).

[19] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-Adaptive
Mutational Fuzzing. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (SP ’15).

[20] Bihuan Chen, Yang Liu, and Wei Le. 2016. Generating Performance Distributions
via Probabilistic Symbolic Execution. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 49–60.
https://doi.org/10.1145/2884781.2884794

[21] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E Plat-
form: Design, Implementation, and Applications. ACM Transactions on Computer
Systems. 30, 1 (2012), 2.

[22] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. 2012. Input-Sensitive
Profiling. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 89–98.
https://doi.org/10.1145/2254064.2254076

[23] Scott A. Crosby and Dan S. Wallach. 2003. Denial of Service via Algorithmic
Complexity Attacks. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12 (SSYM’03). USENIX Association, Berkeley, CA, USA, 3–3.
http://dl.acm.org/citation.cfm?id=1251353.1251356

[24] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories:
introduction and applications. Commun. ACM 54 (Sept. 2011), 69–77. Issue 9.
https://doi.org/10.1145/1995376.1995394

[25] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and Angelos Stavrou. 2015. Rad-
min: early detection of application-level resource exhaustion and starvation
attacks. In International Workshop on Recent Advances in Intrusion Detection.

Springer, 515–537.
[26] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin,

Michael Schmidt, Henrik Theiling, Stephan Thesing, and ReinhardWilhelm. 2001.
Reliable and preciseWCET determination for a real-life processor. In International
Workshop on Embedded Software. Springer, 469–485.

[27] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (ESEC/FSE ’11).

[28] Vijay Ganesh, Tim Leek, andMartin Rinard. 2009. Taint-based DirectedWhitebox
Fuzzing. In Proceedings of the 31st International Conference on Software Engineering
(ICSE ’09).

[29] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based
Whitebox Fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’08).

[30] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05).

[31] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. 2007. Measuring
Empirical Computational Complexity. In Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering (ESEC-FSE ’07). ACM, New York, NY,
USA, 395–404. https://doi.org/10.1145/1287624.1287681

[32] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. 1982. Gprof: A call
graph execution profiler. In ACM Sigplan Notices, Vol. 17. ACM, 120–126.

[33] Mark Grechanik, Chen Fu, and Qing Xie. 2012. Automatically Finding Perfor-
mance Problems with Feedback-directed Learning Software Testing. In Proceed-
ings of the 34th International Conference on Software Engineering (ICSE ’12). IEEE
Press, Piscataway, NJ, USA, 156–166. http://dl.acm.org/citation.cfm?id=2337223.
2337242

[34] BogdanGroza andMariusMinea. 2011. Formalmodelling and automatic detection
of resource exhaustion attacks. In Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. ACM, 326–333.

[35] Mark Harman. 2007. The current state and future of search based software
engineering. In 2007 Future of Software Engineering. IEEE Computer Society,
342–357.

[36] Mark Harman and Bryan F Jones. 2001. Search-based software engineering.
Information and software Technology 43, 14 (2001), 833–839.

[37] Sam Hocevar. 2007. zzuf. http://caca.zoy.org/wiki/zzuf. Accessed Jan 2018.
[38] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code

Fragments. In Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12).

[39] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-world Performance Bugs. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’12). ACM, New York, NY, USA, 77–88. https://doi.org/10.1145/
2254064.2254075

[40] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. 2011. KLOVER: A Sym-
bolic Execution and Automatic Test Generation Tool for C++ Programs. In CAV.
609–615.

[41] Qi Luo, Denys Poshyvanyk, Aswathy Nair, and Mark Grechanik. 2016. FORE-
POST: A Tool for Detecting Performance Problems with Feedback-driven Learn-
ing Software Testing. In Proceedings of the 38th International Conference on Soft-
ware Engineering Companion (ICSE ’16). ACM, New York, NY, USA, 593–596.
https://doi.org/10.1145/2889160.2889164

[42] Phil McMinn. 2011. Search-Based Software Testing: Past, Present and Future.
In Proceedings of the 2011 IEEE Fourth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW ’11). IEEE Computer Society,
Washington, DC, USA, 153–163. https://doi.org/10.1109/ICSTW.2011.100

[43] Glenford J. Myers. 1979. Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA.

[44] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A program supervision
framework. Electronic notes in theoretical computer science 89, 2 (2003), 44–66.

[45] Adrian Nistor, Linhai Song, DarkoMarinov, and Shan Lu. 2013. Toddler: Detecting
Performance Problems via Similar Memory-access Patterns. In Proceedings of the
2013 International Conference on Software Engineering (ICSE ’13). IEEE Press, Pis-
cataway, NJ, USA, 562–571. http://dl.acm.org/citation.cfm?id=2486788.2486862

[46] Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2015. Static Detection of Asymptotic
Performance Bugs in Collection Traversals. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
2015). ACM, New York, NY, USA, 369–378. https://doi.org/10.1145/2737924.
2737966

[47] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed Random
Testing for Java. In Companion to the 22nd ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications Companion (OOPSLA ’07).

[48] Rohan Padhye and Koushik Sen. 2017. Travioli: A Dynamic Analysis for Detecting
Data-structure Traversals. In Proceedings of the 39th International Conference on
Software Engineering. https://doi.org/10.1109/ICSE.2017.50

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3414
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3414
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4858
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4858
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5265
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5265
http://llvm.org/docs/LibFuzzer.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9804
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9804
https://fedora.pkgs.org/27/fedora-x86_64/wf-0.41-16.fc27.x86_64.rpm.html
https://fedora.pkgs.org/27/fedora-x86_64/wf-0.41-16.fc27.x86_64.rpm.html
http://dl.acm.org/citation.cfm?id=1792734.1792771
http://dl.acm.org/citation.cfm?id=243846.243857
http://dl.acm.org/citation.cfm?id=243846.243857
https://doi.org/10.1145/268946.268958
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://doi.org/10.1145/2884781.2884794
https://doi.org/10.1145/2254064.2254076
http://dl.acm.org/citation.cfm?id=1251353.1251356
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1287624.1287681
http://dl.acm.org/citation.cfm?id=2337223.2337242
http://dl.acm.org/citation.cfm?id=2337223.2337242
http://caca.zoy.org/wiki/zzuf
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2889160.2889164
https://doi.org/10.1109/ICSTW.2011.100
http://dl.acm.org/citation.cfm?id=2486788.2486862
https://doi.org/10.1145/2737924.2737966
https://doi.org/10.1145/2737924.2737966
https://doi.org/10.1109/ICSE.2017.50

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song

[49] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. 2017. Slow-
Fuzz: Automated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities. In Proceedings of the ACM Conference on Computer and Commu-
nications Security.

[50] Michael Pradel, Markus Huggler, and Thomas R. Gross. 2014. Performance
Regression Testing of Concurrent Classes. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis (ISSTA 2014). ACM, New York, NY,
USA, 13–25. https://doi.org/10.1145/2610384.2610393

[51] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In
Proceedings of the 2017 Network and Distributed System Security Symposium (NDSS
’17).

[52] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (ESEC/FSE-13).

[53] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. 2015. Automating
Performance Bottleneck Detection Using Search-based Application Profiling. In
Proceedings of the 2015 International Symposium on Software Testing and Analysis
(ISSTA 2015). ACM,NewYork, NY, USA, 270–281. https://doi.org/10.1145/2771783.
2771816

[54] Linhai Song and Shan Lu. 2014. Statistical Debugging for Real-world Performance
Problems. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA ’14). ACM,
New York, NY, USA, 561–578. https://doi.org/10.1145/2660193.2660234

[55] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex -White Box Test Generation
for .NET. In Proceedings of Tests and Proofs.

[56] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. 2018. Synthesizing
Programs That Expose Performance Bottlenecks. In Proceedings of the 2018 In-
ternational Symposium on Code Generation and Optimization (CGO 2018). ACM,

New York, NY, USA, 314–326. https://doi.org/10.1145/3168830
[57] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. 2008. The Worst-case Execution-time Problem – Overview
of Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst. 7, 3, Article
36 (May 2008), 53 pages. https://doi.org/10.1145/1347375.1347389

[58] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11).

[59] Shin Yoo and Mark Harman. 2007. Pareto efficient multi-objective test case
selection. In Proceedings of the 2007 international symposium on Software testing
and analysis. ACM, 140–150.

[60] Michał Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.
Accessed Jan 2018.

[61] Michał Zalewski. 2014. American Fuzzy Lop Technical Details. http://lcamtuf.
coredump.cx/afl/technical_details.txt. Accessed Jan 2018.

[62] Michał Zalewski. 2016. FidgetyAFL. https://groups.google.com/d/msg/afl-users/
fOPeb62FZUg/CES5lhznDgAJ. Accessed Jan 2018.

[63] Dmitrijs Zaparanuks and Matthias Hauswirth. 2012. Algorithmic Profiling. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 67–76. https:
//doi.org/10.1145/2254064.2254074

[64] Saman Taghavi Zargar, James Joshi, and David Tipper. 2013. A survey of defense
mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE
Communications Surveys & Tutorials 15, 4 (2013), 2046–2069.

[65] Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. 2011. Automatic
Generation of Load Tests. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’11). IEEE Computer Society,
Washington, DC, USA, 43–52. https://doi.org/10.1109/ASE.2011.6100093

https://doi.org/10.1145/2610384.2610393
https://doi.org/10.1145/2771783.2771816
https://doi.org/10.1145/2771783.2771816
https://doi.org/10.1145/2660193.2660234
https://doi.org/10.1145/3168830
https://doi.org/10.1145/1347375.1347389
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
https://doi.org/10.1145/2254064.2254074
https://doi.org/10.1145/2254064.2254074
https://doi.org/10.1109/ASE.2011.6100093

	Abstract
	1 Introduction
	2 Overview
	2.1 A Motivating Example
	2.2 Performance Fuzzing

	3 The PerfFuzz Algorithm
	4 Implementation
	5 Evaluation
	5.1 Comparison with SlowFuzz
	5.2 Comparison with Coverage-Guided Fuzzing
	5.3 Case Studies

	6 Threats to Validity
	7 Related Work
	Acknowledgments
	References

