
void main() {

 fill_and_empty(1);

 fill_and_empty(5);

 fill_and_empty(10);

 fill_and_empty(20);

}

void fill_and_empty(n) {

 q = create_queue(n);

 for i = 1 to n

 q.enqueue(i);

 for i = 1 to n

 q.dequeue();

}

int array[];

int capacity, size;

int front, back;

// add object x to queue

void enqueue(x){

 if (size >= capacity)

 throw error;

 array[back] = x;

 size++; back++;

}

// remove object from queue

object dequeue(){

 if (size <= 0)

 throw error;

 return array[front];

 size--; front++;

}

 ...

program + tests

enqueue(x):::ENTER

size = 0

front = 0

back = -1

capacity = 1

enqueue(x):::EXIT

size = 1

front = 0

back = 0

capacity = 1

dequeue():::ENTER

size = 1

front = 0

back = 0

capacity = 1

dequeue():::EXIT

size = 0

front = 1

back = 0

capacity = 1

enqueue(x):::ENTER

size = 0

front = 0

back = -1

capacity = 5

enqueue(x):::EXIT

size = 1

front = 0

back = 0

capacity = 5

enqueue(x):::ENTER

size = 1

front = 0

back = 0

capacity = 5

enqueue(x):::EXIT

size = 2

front = 0

back = 1

capacity = 5

...

data trace

instrument
+ execute

enqueue(x):::ENTER

size <= capacity

front <= capacity

back <= capacity

enqueue(x):::EXIT

size <= capacity

return <==> (size < capacity)

data invariants
Daikon

program point
sequence

data-temporal trace

enqueue(x):::ENTER

enqueue(x):::EXIT

dequeue():::ENTER

dequeue():::EXIT

enqueue(x):::ENTER

enqueue(x):::EXIT

enqueue(x):::ENTER

enqueue(x):::EXIT

enqueue(x):::ENTER

enqueue(x):::EXIT

enqueue(x):::ENTER

enqueue(x):::EXIT

enqueue(x):::ENTER

enqueue(x):::EXIT

dequeue():::ENTER

dequeue():::EXIT

dequeue():::ENTER

dequeue():::EXIT

dequeue():::ENTER

dequeue():::EXIT

dequeue():::ENTER

dequeue():::EXIT

dequeue():::ENTER

dequeue():::EXIT

...

dequeue():::ENTER

front <= back

size <= capacity

back <= capacity

G(x)

spec type Texada

“x always holds”

G(“size <= capacity”)

spec instantiation(s)

output

size <= capacity

front <= capacity

back <= capacity

..

size <= capacity

return <==> (size <

capacity)

..

front <= back

size <= capacity

back <= capacity

..

...

Daikon: infers likely data invariants at
program points by instrumenting
program and observing program runs

Texada: mines instances of any given
LTL property which hold on the given log
(set of traces – i.e. event sequences)

input

Quarry
Mines temporal properties
of arbitrary complexity
between data invariants.

Mining Temporal Relationships between Data Invariants
Caroline Lemieux

Department of Computer Science
University of British Columbia

Temporal Specs Data Specs

relate events through time describe data at specific time

But: data values may persist or interact through time

data-temporal specifications

Ongoing work 2

Ongoing work 1

size >= 3

..

size >= 3

..

size == 4

..

size >= 3

..

Does “size >= 3” always hold on this trace?

current string
semantics: no

data invariant
semantics: yes

size >= 3 and
size == 4

are different strings

size == 4

is stronger than
size >= 3

 Future work: incorporate SMT/theorem proving tools

Preliminary evaluation

front back

 5

currentSize

 11 9 28 3 7 16

Ran Quarry on QueueAr, a
queue implemented with a
wrap-around array.

this.currentSize == 0

always precedes
this.currentSize >=1

• Holds because queue is
constructed empty

• Confirms expected behaviour of
test suite

this.currentSize == this.front

is always followed by
this.currentSize == 0

this.currentSize >= 1

is never followed by
this.currentSize == this.back

• Both are initialization
invariants

• Temporal
connectives provide
essential context

[1] M. P. Robillard, et al. Automated API property inference techniques. TSE, 613-637, 2013. [3] V Dallmeier, et al. Generating Test Cases for Specification Mining. ISSTA, 85-96, 2010.
[2] M. D. Ernst, et al. Dynamically discovering likely program invariants to support program evolution. TSE, 27(2):99–123, 2001.
[4] I. Beschastnikh, et al. Leveraging existing instrumentation to automatically infer invariant-constrained models. FSE, 267–277, 2011.

Spec inference: likely specs without manual effort

Developers rarely write down program specs

Program specifications (specs) are useful

• specifications can be tedious to specify manually
• may fall out of date quickly

• program maintenance [1]
• confirm expected behavior[2]

• bug detection[2]
• test generation[3]

• system comprehension[4]
• system modeling[4]
• reverse
 engineering[1]

known
system

inferred
specs

unknown
system

inferred
specs

?



size == 0

size == 1

size == 2

size == 2

size == 1

size == 2

size == 3

size == 2

size == 1

size == 0

size >= 1

is always followed by
size == 0

i.e., all items are
eventually removed

from the queue

Quarry mined 100s of spec instances on QueueAr

Future work: design interestingness filter

Texada
confidence

measure

Daikon
confidence

measure

Quarry
confidence

measure

?

this.currentSize == 0

never occurs until

this.theArray[]

elements == null

enQ::enter

size == 0

enQ::exit

size == 1

enQ::enter

size == 1

enQ::exit

size == 2

deQ::enter

size == 2

at exit of
enqueue(),

size >= 1

theArray

• Queue constructed with null
elements

• Elaborates how queue is initially
created empty

create()

enqueue(5)

enqueue(1)

observe()

enqueue(24)

enqueue(7)

dequeue()

enqueue(19)

observe()

dequeue()

enqueue()

is always followed by
dequeue()

provide more
information

than data specs or
temporal specs

alone

