
void main() { 

  fill_and_empty(1); 

  fill_and_empty(5); 

  fill_and_empty(10); 

  fill_and_empty(20); 

} 

 

void fill_and_empty(n) { 

  q = create_queue(n); 

  for i = 1 to n  

    q.enqueue(i); 

  for i = 1 to n 

    q.dequeue(); 

} 

int array[]; 

int capacity, size; 

int front, back; 

 

// add object x to queue 

void enqueue(x){ 

  if (size >= capacity) 

     throw error; 

  array[back] = x; 

  size++; back++; 

} 

 

// remove object from queue 

object dequeue(){ 

  if (size <= 0) 

     throw error; 

  return array[front]; 

  size--; front++; 

} 

            ... 
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data invariants 
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program point 
sequence 

data-temporal trace 
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Daikon: infers likely data invariants at 
program points by instrumenting 
program and observing program runs 

 

 

Texada: mines instances of any given 
LTL property which hold on the given log 
(set of traces – i.e. event sequences) 

input 

Quarry 
Mines temporal properties 
of arbitrary complexity 
between data invariants. 

Mining Temporal Relationships between Data Invariants  
Caroline Lemieux 

Department of Computer Science 
University of British Columbia 

Temporal Specs Data Specs 

relate events through time describe data at specific time 

But: data values may persist or interact through time  

data-temporal specifications  

  

Ongoing work 2  

Ongoing work 1 
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Does “size >= 3” always hold on this trace? 

current string 
semantics: no  

data invariant 
semantics: yes 

size >= 3 and 
size == 4 

are different strings 

size == 4 

is stronger than 
size >= 3 

 Future work: incorporate SMT/theorem proving tools 

Preliminary evaluation 
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Ran Quarry on QueueAr, a 
queue implemented with a 
wrap-around array. 

this.currentSize == 0 

always precedes 
this.currentSize >=1 

• Holds because queue is 
constructed empty  

• Confirms expected behaviour of 
test suite 

this.currentSize == this.front 

is always followed by 
this.currentSize == 0 

this.currentSize >= 1 

is never followed by 
this.currentSize == this.back 

• Both are initialization 
invariants 

• Temporal 
connectives provide 
essential context 
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Spec inference: likely specs without manual effort 

Developers rarely write down program specs 

Program specifications (specs) are useful 

• specifications can be tedious to specify manually 
• may fall out of date quickly 

• program maintenance [1] 
• confirm expected behavior[2] 

• bug detection[2] 
• test generation[3] 
 

• system comprehension[4]   
• system modeling[4] 
• reverse  
  engineering[1] 
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size >= 1 

is always followed by 
size == 0 

i.e., all items are 
eventually removed 

from the queue 

Quarry mined 100s of spec instances on QueueAr 

Future work: design interestingness filter 
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this.currentSize == 0 

never occurs until  

this.theArray[] 

elements == null 

enQ::enter 

size == 0 

enQ::exit 

size == 1 

enQ::enter 

size == 1 

enQ::exit 

size == 2 

deQ::enter 

size == 2 

at exit of 
enqueue(),  

size >= 1 

theArray 

• Queue constructed with null 
elements 

• Elaborates how queue is initially 
created empty 
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observe() 

dequeue() 

enqueue() 

is always followed by 
dequeue() 

provide more 
information 

than data specs or 
temporal specs 

alone 


