2022-09-08

CPSC 593L: Topics in Programming Languages

Automated Testing, Bug
Detection, and Program Analysis

September 7t 2022
Instructor: Caroline Lemieux
Term: 2022W |

Class website: carolemieux.com/teaching/CPSC539L 2022wl.html
Sign up for class piazza: piazza.com/ubc.ca/winterterml12022/cpsc5391

Caroline Lemieux: CPSC 539L

https://www.carolemieux.com/teaching/CPSC539L_2022w1.html
http://piazza.com/ubc.ca/winterterm12022/cpsc539l

Software Has Bugs

A

2022-09-08 Caroline Lemieux: CPSC 539L

Bugs Have Increasing Consequences

iii
[
n
|
§

2022-09-08 Caroline Lemieux: CPSC 539L

Bugs Have Increasing Consequences

2022-09-08 Caroline Lemieux: CPSC 539L 4

Bugs in OpenSSL

Heartbleed
Severity:

Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

&«

. can be used to reveal up
to 64k of memory to a connected
client or server ...”

Costs:
« >$500 million
» 30,000 X.509 certificates compromised

*4.5 million patient records compromised
* CRA website shutdown, 900 SINs leaked

(]
By

2022-09-08 Caroline Lemieux: CPSC 539L

Bugs in OpenSSL

Heartbleed
Severity:

Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

&«

. can be used to reveal up
to 64k of memory to a connected
client or server ...”

Costs:
« >$500 million
» 30,000 X.509 certificates compromised

*4.5 million patient records compromised
* CRA website shutdown, 900 SINs leaked

(]
By

2022-09-08 Caroline Lemieux: CPSC 539L

Bugs in OpenSSL

Heartbleed
Severity:

Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

&«

. can be used to reveal up
to 64k of memory to a connected
client or server ...”

Costs:
« >$500 million
» 30,000 X.509 certificates compromised

*4.5 million patient records compromised
* CRA website shutdown, 900 SINs leaked

(]
By

2022-09-08 Caroline Lemieux: CPSC 539L

2022-09-08

Bugs in Ope

Caroline Lemieux: CPSC 539L

nSSL

CVE-2016-6309
Severity: YA}

Introduced: 22 Sep 2016
Discovered: 23 Sep 2016
[Fixed: 26 Sep 2016

(44

. likely to result in a
crash, however it could
potentially lead to execution
of arbitrary code ...”

Costs:
* minimal

2022-09-08

Bugs in Ope

by honggfuzz

(modern coverage-guided fuzzer)

Caroline Lemieux: CPSC 539L

nSSL

CVE-2016-6309
Severity: RGN

Introduced: 22 Sep 2016
Discovered: 23 Sep 2016
[Fixed: 26 Sep 2016
“... likely to result in a
crash, however it could
potentially lead to execution
of arbitrary code ...”

Costs:
e minimal

Bugs in OpenSSL

CVE-2016-6309
Severity: RGN

Introduced: 22 Sep 2016
Discovered: 23 Sep 2016
Fixed: 26 Sep 2016

by honggfuzz

(modern coverage-guided fuzzer)

(13

. likely to result in a
ould
ecution

b2

In this class, we will study the tools &
techniques that enabled this rapid discovery

2022-09-08 Caroline Lemieux: CPSC 539L

Goal(s) of this Course

Intro to research in automated testing, bug detection, and program analysis

2022-09-08 Caroline Lemieux: CPSC 539L

Schedule for Today

* Introductions
* Class format/logistics
* What is automated testing, bug detection, program analysis?

* Black-box/Random Fuzzing
* TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L

* Introductions

2022-09-08

Schedule for Today

Caroline Lemieux: CPSC 539L

Introductions

* Name, year, advisor/lab/research interests

* Why are you interested in this class!?

2022-09-08 Caroline Lemieux: CPSC 539L

Schedule for Today

* Class format/logistics

2022-09-08 Caroline Lemieux: CPSC 539L

Goal(s) of this Course

Intro to research in automated testing, bug detection, and program analysis

* Become familiar with key techniques in automated testing
* Class activities: paper responses, lecture

* Read and critically evaluate papers in the field
* Class activities: paper responses, discussion
* Assess which problems are well-suited to different automated testing techniques

* Class activities: paper responses, discussion, lecture, assighment

* Assess, design, and conduct experiments of a program analysis/testing tool
* Class activities: paper responses, discussion, assighment, project

* Design and conduct a research project in program analysis/testing
* Class activities: project

2022-09-08 Caroline Lemieux: CPSC 539L

Goal(s) of this Course

Intro to research in automated testing, bug detection, and program analysis

* Become familiar with key techniques in automated testing
* Class activities: paper responses, lecture

* Read and critically evaluate papers in the field
* Class activities: paper responses, discussion
* Assess which problems are well-suited to different automated testing techniques

* Class activities: paper responses, discussion, lecture, assighment

* Assess, design, and conduct experiments of a program analysis/testing tool
* Class activities: paper responses, discussion, assighment, project

* Design and conduct a research project in program analysis/testing
* Class activities: project

2022-09-08 Caroline Lemieux: CPSC 539L

Class Format
This class has 3 main components:
* Paper responses
* Assignment

* Course Project

2022-09-08 Caroline Lemieux: CPSC 539L

Paper Responses

Before each class (except designated classes), you will read a research
paper + post a response on Piazza

Paper responses should summarize the paper + your opinions to help
spark discussion in class

In-class discussions of the paper will be led by a discussion lead
(student). Goal of the discussion is to deepen the understanding +
critical analysis of the subject matter.

2022-09-08 Caroline Lemieux: CPSC 539L 19

Class Format

This class has 3 main components:

* Paper responses (35%)
* (20%) Responses, due |8 hours before class
* (10%) In class participation in discussions + Piazza participation

* (5%) Discussion lead: read other students’ responses and prepare to lead
discussion in-class

* Assignment

* Course Project

2022-09-08 Caroline Lemieux: CPSC 539L

20

Assighment

You will implement a random + coverage-guided fuzzer in Python

You will evaluate these fuzzers on different benchmarks, and write up a
(guided) analysis of the reults

Released today, if you want to take a look!

2022-09-08 Caroline Lemieux: CPSC 539L

21

Class Format

This class has 3 main components:

* Paper responses (35%)
* (20%) Responses, due |8 hours before class
* (10%) In class participation in discussions + Piazza participation

* (5%) Discussion lead: read other students’ responses and prepare to lead
discussion in-class

 Assignment (12.5%)

* Course Project

2022-09-08 Caroline Lemieux: CPSC 539L

22

Project

Open-ended, choose a topic related to automated testing, program analysis,
bug detection.

Potential project types (see website for concrete suggestions):
* develop a new tool for testing in a particular domain

* tweaking an existing algorithm: evaluate effect of change

* an extensive re-evaluation of an existing tool

* a reimplementation of an algorithm in a new domain

* or creating a benchmark suite.

You may work in groups, or alone (onlr recommended if you have a topic
closely connected to your research field)

2022-09-08 Caroline Lemieux: CPSC 539L

23

Project

Proposal: describe background of the project, goal + intended
deliverables, evaluation plan, timeline, division of work.

Check-in: I month in, update on any changes to plan since proposal

Writeup: background of the project, intended goal, what was
accomplished, evaluation results, division of work

Presentation: summarize background and key achievements to class

2022-09-08 Caroline Lemieux: CPSC 539L 24

Class Format

This class has 3 main components:

* Paper responses (35%)
* (20%) Responses, due |8 hours before class
* (10%) In class participation in discussions + Piazza participation

* (5%) Discussion lead: read other students’ responses and prepare to lead
discussion in-class

 Assignment (12.5%)

* Course Project (52.5%)
* (10%) Proposal: due Fri Oct 14
* (2.5%) Check-in: due Fri Nov 18
* (30%) Writeup: due Dec |6
* (10%) Presentation: week of Dec 5%, length TBD depending on # groups

2022-09-08 Caroline Lemieux: CPSC 539L

25

Attendance + Late Policy

* This class relies on regular in-person attendance of discussions
 Reading papers alone: ®
* Discussing papers with others: ©

* Paper responses must be submitted on-time
* All other class deadlines (assignment, project) are Fridays at 6pm

* If you anticipate being unable to attend class for some legitimate
reason, please inform me ahead of time

* Especially if you are signed up as discussion lead

2022-09-08 Caroline Lemieux: CPSC 539L

26

Academic Honesty

* Responses: You may discuss papers with other students, but write
your paper responses alone. Do not read other students’ responses
on Piazza before submitting yours.

* Assignment: You may discuss the assignment with other students,
but the code + writeup should be your own. Attribute any code from
StackOverflow, etc, accordingly.

* Project: You may use other people’s code as a base for your project;
attribute the source of any piece of code outside of the main project.
Do not plagiarize any text for your proposal + writeup: it should be

written by you and your teammates alone.

2022-09-08 Caroline Lemieux: CPSC 539L 27

Schedule for Today

* What is automated testing, bug detection, program analysis?

2022-09-08 Caroline Lemieux: CPSC 539L

28

2022-09-08

Automated Testing # Test Automation

Caroline Lemieux: CPSC 539L

29

Test Automation

https://www.functionize.com/automated-testing

Whatis automated teStlng? https://www.atlassian.com/devops/devops-tools/test-automation

Automated testing refers to any approach that makes it possible to run your tests ‘

without human intervention. Traditional testing has been done manually. A i ° °
What is test automation?

human follows a set of steps to check whether things are behaving as expected.
By contrast, an automated test is created once and then can run any time you
need it.

For a long time, developers have automated their unit testing. That is, the tests

that check whether a given function is worki ly. Then automated testi L . . S S
at checiowhethera given function I working properly. Then automated testing Test automation is the practice of automatically reviewing and validating a software

product, such as a web application, to make sure it meets predefined quality standards for

https://en.wikipedia.org/wiki/Test_automation
Or locate a text entry box and fill it out correctly. They also allow you to verify that TeSti“g prQCticeS typically involve the following stages: TeS-t. automati(.)n o

Unit testing: validates individual units of code, such as a function, so it works as

frameworks like Selenium were developed. These allow modules or entire
applications to be tested automatically.

~ code style, functionality (business logic), and user experience.
These frameworks allow a test script to interact with your Ul, replicating the

actions of a user. For instance, they allow you to find a specific button and click it.

From Wikipedia, the free encyclopedia

Integration testing: ensures several pieces of code can work together without u

consequences See also: Manual testing

End-to-end testing: validates that the application meets the user’s expectation:
This article includes a list of general references, but it

Exploratory testing: takes an unstructured approach to reviewing numerous are . . L o
application from the user perspective, to uncover functional or visual issues lacks sufficient corresponding inline citations.

= Please help to improve this article by introducin
The different types of testing are often visualized as a pyramid. As you climb up the . P P y 9
the number of tests in each type decreases, and the cost of creating and running te more precise citations. (February 2009) (Learn how and

increases. when to remove this template message)

In software testing, test automation is the use of software separate from the
software being tested to control the execution of tests and the comparison of
actual outcomes with predicted outcomes.!!] Test automation can automate some
repetitive but necessary tasks in a formalized testing process already in place, or
perform additional testing that would be difficult to do manually. Test automation
is critical for continuous delivery and continuous testing.[?!

2022-09-08 Caroline Lemieux: CPSC 539L 30

https://www.functionize.com/automated-testing
https://www.atlassian.com/devops/devops-tools/test-automation
https://en.wikipedia.org/wiki/Test_automation

2022-09-08

This is not what we will cover in class

Caroline Lemieux: CPSC 539L

31

https://www.functionize.com/automated-testing
https://www.atlassian.com/devops/devops-tools/test-automation
https://en.wikipedia.org/wiki/Test_automation

Automated Testing

* Test-input generation
* Generate test inputs that expose bugs in a program

* Test case / Test Suite Generation
* Generate test suites that expose bugs in a program

2022-09-08 Caroline Lemieux: CPSC 539L

32

Automated Testing

e Test case / Test Suite Generation Fatllelele]si a7 NI | Nelo)/= ol FI{=T N1 Wel 1SS

* Generate test suites that expose bugs in a program

2022-09-08 Caroline Lemieux: CPSC 539L 33

Automated Testing

+ Test-input generation Fuzzing, Concolic + Symbolic Execution

* Generate test inputs that expose bugs in a program

2022-09-08 Caroline Lemieux: CPSC 539L

34

Test-Input Generation

* Assume a program P which takes in input i

2022-09-08 Caroline Lemieux: CPSC 539L

35

Example Program P

———

def cgi decode(s: str) -> str:
Decode the CGI-encoded string s : * replace '+' by

min I

" * replace "Z%xx" by the character

mimn

with hex number xx. Return the decoded string. Raise “ValueError for invalid inputs.

e a
i |
| while i < len(s): :
| ¢ = s[i] i
i if ¢ == "+’: i
a toe a
| elif c == '%’: :
| digit _high, digit low = s[i + 1], s[i + 2] |
i i+=2 i
| if digit_high in hex_values and digit low in hex_values: i
i v = hex values[digit high] * 16 + hex values[digit low] t += chr(v) i
: else: i
| raise ValueError("Invalid encoding") i
| else: i
i t += ¢ !
: i+=1 i
| return t i

2022-09-08 Caroline Lemieux: CPSC 539L 36

2022-09-08

Example Program P

def cgi decode(s: str) -> str:
Decode the CGI-encoded string s : * replace '+' by

mmn [

" * replace "%xx" by the character

mmn

with hex number xx. Return the decoded string. Raise “ValueError™ for 1invalid inputs.

|
|
|
:
R
l i=0
: while i < len(s):
: c = s[i]
: if ¢ == '+’
| t += "' ¢
: elif c == '%’:
| digit_high, digit low = s[i + 1], s[i + 2]
| i+=2
I if digit high in hex_values and digit low in hex_values:
: v = hex_values[digit high] * 16 + hex_values[digit low] t += chr(v)
: else:
| raise ValueError("Invalid encoding")
| else:
| t +=c¢
| i+=1
! return t
Caroline Lemieux: CPSC 539L 37

Example Program P, Input i

def cgi_decode(s: str) -> str:
Decode the CGI-encoded string “s : * replace '+' by

" * replace "%xx" by the character

mmn

with hex number xx. Return the decoded string. Raise “ValueError™ for 1invalid inputs.

Hello%21+World%22

|

|

|

:

AL

I i=o0

: while i < len(s):

: c = s[i]

: if ¢ == "+’

| t+=" ¢

! elif c == '%’:

| digit_high, digit low = s[i + 1], s[i + 2]
| i+4=2

I if digit_high in hex_values and digit_low in hex_values:
: v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
: else:

| raise ValueError("Invalid encoding")

| else:

| t += ¢

: i+=1

! return t

2022-09-08 Caroline Lemieux: CPSC 539L 38

Example Program P, Input i

def cgi_decode(s: str) -> str:
Decode the CGI-encoded string “s : * replace '+' by

" * replace "%xx" by the character

mon

with hex number xx. Return the decoded string. Raise “ValueError™ for invalid inputs.

Hello%21+World%22

-
:

|

:

SR

I i=0

: while i < len(s):

: c = s[i]

: if c == "+’

| t+= " ¢

! elif c == '%’:

| digit_high, digit low = s[i + 1], s[i + 2]

| i+=2

I if digit_high in hex_values and digit_low in hex_values:
: v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
: else:

| raise ValueError("Invalid encoding")

| else:

| t +=c

: i+=1

! return t

2022-09-08 Caroline Lemieux: CPSC 539L 39

Example Program P, Input i, Result P(i)

Hello%21+World%22

That input exercised the
code highlighted green

Returned normally

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string "s : * replace '+' by ' ' * replace "%xx" by the character
with hex number xx. Return the decoded string. Raise “ValueError™ for invalid inputs."""

else:
raise ValueError("Invalid encoding")

2022-09-08

Caroline Lemieux: CPSC 539L 40

Example Program P, Input i, Result P(i)

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string s : * replace '+' by ' ' * replace "%xx" by the character
with hex number xx. Return the decoded string. Raise “ValueError™ for invalid inputs."""

Hello%2V+World%22

That inPUt exercised the v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)

code highlighted green

i+=1

Returned aValueError

2022-09-08 Caroline Lemieux: CPSC 539L 4]

Test-Input Generation

* Assume a program P which takes in input i

* Goal of automated Test-Input Generation:
* Given P, generate inputs i which expose bugs

2022-09-08 Caroline Lemieux: CPSC 539L

42

Test-Input Generation

* Assume a program P which takes in input i

* Goal of automated Test-Input Generation:
* Given P, generate inputs i which expose bugs... or other interesting behaviors

2022-09-08 Caroline Lemieux: CPSC 539L

43

S S S S S S S 0 S S S S o 0 o S S S S S S S o 0 S 0 S S S S S S S e S S S o S S o o
++m+++m+++ﬁ+++ﬁ+++ﬁ$‘+++:’%E"+++ﬁ$‘+++ﬁﬁ"+++:'%E"+++:'$E"+++:'%E"+++:'%E"+++:'$E"+++ﬁ$‘+++ﬁﬁ"+++:’ﬁ$‘+++ﬁ$‘+++ﬁﬁ"+++:’%E"+++ﬁ$‘+++ﬁﬁ"+++:'%E"+++:'$E"+++:'%E"+++:'%E"+++:'$E"+++ﬁ$‘+++ﬁﬁ"+++:’ﬁ$‘+++ﬁﬁ"+++ﬁ$‘+++:’%E"+++ﬁ$‘+++ﬁﬁ"+++ﬁ+++ﬁ+++ﬁ+++ﬁ+++ﬁ+++
ey
e,
e o e e e e e e e e o o o e o e o o
e D0 0 0 0 0 A 0 00 9 A 9 00 3 90 90 30 00 00 30 A 00 00 0 90 00 0T T 0 D0 8T A D0 00 A A 90 00 A 00 30 AT 00 00 30 0 00 A D S A 90 D0 8T D0 90 30 A 90 00 00 A 00 3L A 0 00 90 A 90 0 A 0 0 S A 9 S A A 0 A 00 00
L L
L Lt Lt Lt Lt Lt Lt Lt Lt Lt Lt L L L L L L L

Bug Detection

Broader than Test-Input Generation

Test Input

Generation:
given program

P(i), find input i
which reveals bug

bty
i

i

i
3
)

Bug Detection

Broader than Test-Input Generation

Bug Detection

Test Input

Generation:

given program

P(i), find input i
which reveals bug

2022-09-08 Caroline Lemieux: CPSC 539L

45

Bug Detection

Broader than Test-Input Generation

2022-09-08

Bug Detection

Test Input

Generation:

given program

P(i), find input i
which reveals bug

Caroline Lemieux: CPSC 539L

E.g. findings bugs in
concurrent programs (will
cover later in the course)

46

2022-09-08

Program Analysis

Dynamic Analysis Static Analysis

Given a program P,and an input i, Analyze a program P independent
analyze P while it executes on of input i: analyze(P)
input i: analyze(P(i))

e.g. data flow analysis, pattern checking in your

e.g. taint analysis: which parts of the input i are compiler

used in different parts of the program?

Caroline Lemieux: CPSC 539L

47

Schedule for Today

* Blackbox/Random Fuzzing

2022-09-08 Caroline Lemieux: CPSC 539L

48

What is Fuzzing/Fuzz Testing!?

Aims to solve the test-input generation problem:

“Given program P generate inputs i which expose bugs or other interesting behaviors ”

Fuzzing algorithms are test-input generation algorithms where:
- Fuzzing algorithm has some elements of randomness

- Fuzzing algorithm may use feedback from program execution: P(i) or
analyze(P(i)) to guide the generation of the next input

2022-09-08 Caroline Lemieux: CPSC 539L 49

Simplest: Random Fuzzing

Given a a program P, generate input i randomly.

Called “blackbox fuzzing” because it is not using any feedback from the
program under test [P(i) or analyze(P(i))] to guide input generation

2022-09-08 Caroline Lemieux: CPSC 539L

50

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08

Random Source

Random Fuzzing

Caroline Lemieux: CPSC 539L

51

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08

Random Source

Random Fuzzing

> A <88>

Caroline Lemieux: CPSC 539L

52

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08

Random Source

Random Fuzzing

> <78>

Caroline Lemieux: CPSC 539L

53

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08

Random Source

Random Fuzzing

> <83>

Caroline Lemieux: CPSC 539L

54

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08

Random Source

Random Fuzzing

> /\\ /\A

Caroline Lemieux: CPSC 539L

$ bc

Segmentation Fault

$

55

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08

Random Source

Random Fuzzing

> /\\ /\A

Caroline Lemieux: CPSC 539L

$ bc

Segmentation Fault

$

56

2022-09-08

hen we use basic oper-
ating system facilities,
such as the kernel and
major utility programs,
we expect a high degree
of rcliability. Thesc
parts of the system are used fre-
quently and this frequent use im-
plies that the programs are well-
tested and working correctly. To
make a sy i about

Unix operating system. The project
proceeded in four steps: (1) pro-
grams were constructed to generate
random characters, and to help test
interactive utilities: (2) these pro-
grams were used (o test a large
number of utilities on random
input strings to see if they crashed;
(3) the strings (or types of strings)
that crash these programs were
i fied; and (4) the causes of the

the correctness of a program, we
should probably use some form of
formal verification. While the tech-
nology for program verification is
advancing, it has not yet reached
the point where it is easy to apply
(or commonly applied) to large sys-
tems.

A recent experience led us to be-
lieve that, while formal verification
of a complete set of operating sys-
tem utilities was t0o onerous a task,
there was still a need for some form
of more complete testing: On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash. These programs included a
significant number of basic operat-
ing system utilities. It is reasonable
to expect that basic utilities should
not crash (“core dump”); on receiv-
ing unusual input, they might exit
with minimal error messages, but
they should not crash. This experi-
ence led us 10 believe that there
might be serious bugs lurking in the
systems that we regularly used.

This scenario motivated a sys-
tematic test of the utility programs
running on various versions of the

to the Internet worm (the “gets fin-
ger” bug) [2,3] We have found ad-
ditional bugs that might indicate
future security holes. Third, some
of the crashes were caused by input
that might be carelessly typed—
some strange and unexpected er-
rors were uncovered by this
method of testing. Fourth, we
sometimes inadvertently feed pro-
grams noisy input (e.g., trying to

Barton P. Miller, Lars Fredriksen and Bryan So

mpirical Study of the
Reliability of

program crashes were identified
and the common mistakes that
cause these crashes were catego-
rized. As a result of testing almost
90 different utility programs on
seven versions of Unix™, we were
able to crash more than 24% of
these programs. Our testing in-
cluded versions of Unix that under-
went commercial product testing. A
yproduct of this project is a list of
bug reports (and fixes) for the
crashed programs and a set of tools
available to the systems community.

There is a rich body of research
on program testing and verifica-
tion. Our approach is not a substi-
tute for a formal verification or
testing procedures, but rather an
inexpensive mechanism to identify
bugs and increase overall system
reliability. We are using a coarse
notion of correctness in our study.
A program is detected as faulty
only if it crashs or hangs (loops in-
definitely). Our goal is to comple-
ment, not replace, existing test pro-
cedures.

This type of study is important
for several reasons: First, it contrib-
utes to the testing community a
large list of real bugs. These bugs
can provide test cases against which
researchers can evaluate more so-
phisticated testing and verification
strategies. Second, one of the bugs
that we found was caused by the
same programming practice that
provided one of the security holes

Unix is a trademark of AT&T Bell Laborato-

ries.

edit or view an object module). In
these cases, we would like some
meaningful and predictable re-
sponse. Fifth, noisy phone lines are
a reality, and major utilities (like
shells and editors) should not crash
because of them. Last, we were in-
terested in the interactions between
our random testing and more tradi-
tional industrial software testing.

While our testing surategy sounds
somewhat naive, its ability to dis-
cover fatal program bugs is impres-
sive. If we consider a program to be
a complex finite state machine,
then our testing strategy can be
thought of as a random walk
through the state space, searching
for undefined states. Similar tech-
niques have been used in areas such
as network protocols and CPU
cache testing. When testing net-
work protocols, a module can be
inserted in the data stream. ’
module randomly perturbs the
packets (either destroying them or
modifying them) to test the proto-
col's error detection and recovery
features. Random testing has been
used in evaluating complex hard-
ware, such as multiprocessor cache
coherence protocols [4]. The state
space of the device, when combined
with the memory architecture, is
large enough that it is difficult to
generate systematic tests. In the
multiprocessor example, random
generation of test cases helped
cover a large part of the state space
and simplify the generation of
cases.

December 1990/Vol.33, No.12/COMMUNICATIONS OF THE ACM

Utilities

COMMUNICATIONS OF THE ACM/ Decerber 1990/Vol.33, No.12

Caroline Lemieux: CPSC 539L

Reading for next time: First “Fuzzing” Paper

'y

-
T —

57

Schedule for Today

e TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L

58

TODOs

* Sign up for Piazza
* In this course, you will be using Piazza, which is a tool to help facilitate discussions.
When creating an account in the tool, you will be asked to provide personally
identifying information. Please know you are not required to consent to sharing this
personal information with the tool, if you are uncomfortable doing so. If you choose
not to provide consent, you may create an account using a nickname and a non-
identifying email address, then let your instructor know what alias you are using in

the tool.
* On Piazza: Respond to sign-up for discussion lead

* Paper response for first paper due Sunday 2:30pm

* Assignment due September 23rd at 6pm

2022-09-08 Caroline Lemieux: CPSC 539L 59

