
CPSC 593L: Topics in Programming Languages

Automated Testing, Bug 
Detection, and Program Analysis

September 7th, 2022
Instructor: Caroline Lemieux

Term: 2022W1

Class website: carolemieux.com/teaching/CPSC539L_2022w1.html
Sign up for class piazza: piazza.com/ubc.ca/winterterm12022/cpsc539l
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Software Has Bugs
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Bugs Have Increasing Consequences
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Bugs Have Increasing Consequences

Badlock Cloudbleed Dirty COW GHOST Heartbleed StageFright ShellShock



Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”
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Costs: 
•>$500 million
• 30,000 X.509 certificates compromised
• 4.5 million patient records compromised
• CRA website shutdown, 900 SINs leaked
•…

Bugs in OpenSSL
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Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”

CVE-2016-6309
Severity: 9.8 CRITICAL
Introduced: 22 Sep 2016
Discovered: 23 Sep 2016
Fixed: 26 Sep 2016
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“... likely to result in a 
crash, however it could 

potentially lead to execution 
of arbitrary code ...”
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?by honggfuzz
(modern coverage-guided fuzzer)

Costs: 
•minimal

Bugs in OpenSSL

In this class, we will study the tools & 
techniques that enabled this rapid discovery



Goal(s) of this Course
Intro to research in automated testing, bug detection, and program analysis
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Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time
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Introductions

• Name, year, advisor/lab/research interests
• Why are you interested in this class?
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Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time
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Goal(s) of this Course
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Intro to research in automated testing, bug detection, and program analysis
• Become familiar with key techniques in automated testing

• Class activities: paper responses, lecture

• Read and critically evaluate papers in the field
• Class activities: paper responses, discussion

• Assess which problems are well-suited to different automated testing techniques
• Class activities: paper responses, discussion, lecture, assignment

• Assess, design, and conduct experiments of a program analysis/testing tool
• Class activities: paper responses, discussion, assignment, project

• Design and conduct a research project in program analysis/testing
• Class activities: project
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Class Format
This class has 3 main components:
• Paper responses
• Assignment
• Course Project
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Paper Responses

Before each class (except designated classes), you will read a research 
paper + post a response on Piazza

Paper responses should summarize the paper + your opinions to help 
spark discussion in class

In-class discussions of the paper will be led by a discussion lead 
(student). Goal of the discussion is to deepen the understanding + 
critical analysis of the subject matter.
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Class Format
This class has 3 main components:
• Paper responses (35%)
• (20%) Responses, due 18 hours before class 
• (10%) In class participation in discussions + Piazza participation 
• (5%) Discussion lead: read other students’ responses and prepare to lead 

discussion in-class

• Assignment
• Course Project
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Assignment

You will implement a random + coverage-guided fuzzer in Python

You will evaluate these fuzzers on different benchmarks, and write up a 
(guided) analysis of the reults

Released today, if you want to take a look!
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Class Format
This class has 3 main components:
• Paper responses (35%)
• (20%) Responses, due 18 hours before class 
• (10%) In class participation in discussions + Piazza participation 
• (5%) Discussion lead: read other students’ responses and prepare to lead 

discussion in-class

• Assignment (12.5%)
• Course Project
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Project
Open-ended, choose a topic related to automated testing, program analysis, 
bug detection.  

Potential project types (see website for concrete suggestions):
• develop a new tool for testing in a particular domain
• tweaking an existing algorithm: evaluate effect of change
• an extensive re-evaluation of an existing tool
• a reimplementation of an algorithm in a new domain
• or creating a benchmark suite.

You may work in groups, or alone (only recommended if you have a topic 
closely connected to your research field)
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Project

Proposal: describe background of the project, goal + intended 
deliverables, evaluation plan, timeline, division of work. 

Check-in: 1 month in, update on any changes to plan since proposal

Writeup: background of the project, intended goal, what was 
accomplished, evaluation results, division of work

Presentation: summarize background and key achievements to class
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Class Format
This class has 3 main components:
• Paper responses (35%)
• (20%) Responses, due 18 hours before class 
• (10%) In class participation in discussions + Piazza participation 
• (5%) Discussion lead: read other students’ responses and prepare to lead 

discussion in-class

• Assignment (12.5%)
• Course Project (52.5%)
• (10%) Proposal: due Fri Oct 14
• (2.5%) Check-in: due Fri Nov 18
• (30%) Writeup: due Dec 16
• (10%) Presentation:  week of Dec 5th, length TBD depending on # groups
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Attendance + Late Policy

• This class relies on regular in-person attendance of discussions
• Reading papers alone: L
• Discussing papers with others: J

• Paper responses must be submitted on-time
• All other class deadlines (assignment, project) are Fridays at 6pm
• If you anticipate being unable to attend class for some legitimate 

reason, please inform me ahead of time
• Especially if you are signed up as discussion lead
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Academic Honesty

• Responses: You may discuss papers with other students, but write 
your paper responses alone. Do not read other students’ responses 
on Piazza before submitting yours.  
• Assignment:You may discuss the assignment with other students, 

but the code + writeup should be your own.  Attribute any code from 
StackOverflow, etc, accordingly.
• Project:You may use other people’s code as a base for your project; 

attribute the source of any piece of code outside of the main project. 
Do not plagiarize any text for your proposal + writeup: it should be 
written by you and your teammates alone.
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Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time
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Automated Testing ≠ Test Automation
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Test Automation
https://www.functionize.com/automated-testing

https://www.atlassian.com/devops/devops-tools/test-automation

https://en.wikipedia.org/wiki/Test_automation
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This is not what we will cover in class
https://www.functionize.com/automated-testing

https://www.atlassian.com/devops/devops-tools/test-automation

https://en.wikipedia.org/wiki/Test_automation
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Automated Testing

• Test-input generation
• Generate test inputs that expose bugs in a program

• Test case / Test Suite Generation
• Generate test suites that expose bugs in a program

2022-09-08 Caroline Lemieux: CPSC 539L 32



Automated Testing

• Test-input generation
• Generate test inputs that expose bugs in a program

• Test case / Test Suite Generation
• Generate test suites that expose bugs in a program

Randoop, EvoSuite: will cover later in class
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Automated Testing

• Test-input generation
• Generate test inputs that expose bugs in a program

• Test case / Test Suite Generation
• Generate test suites that expose bugs in a program

Fuzzing, Concolic + Symbolic Execution
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Test-Input Generation

• Assume a program P which takes in input i

2022-09-08 Caroline Lemieux: CPSC 539L 35



Example Program P
def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s): 

c = s[i] 
if c == '+’: 

t += ' ‘
elif c == '%’: 

digit_high, digit_low = s[i + 1], s[i + 2] 
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c 
i += 1

return t 

2022-09-08 Caroline Lemieux: CPSC 539L 36



Example Program P
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Example Program P, Input i

Hello%21+World%22
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def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s): 

c = s[i] 
if c == '+’: 

t += ' ‘
elif c == '%’: 

digit_high, digit_low = s[i + 1], s[i + 2] 
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c 
i += 1

return t 



Example Program P, Input i
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def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s): 

c = s[i] 
if c == '+’: 

t += ' ‘
elif c == '%’: 

digit_high, digit_low = s[i + 1], s[i + 2] 
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c 
i += 1

return t 



Example Program P, Input i, Result P(i)

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s):

c = s[i]
if c == '+’:

t += ' ‘
elif c == '%’:

digit_high, digit_low = s[i + 1], s[i + 2]
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c
i += 1

return t

Hello%21+World%22

That input exercised the 
code highlighted green

Returned normally
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Example Program P, Input i, Result P(i)

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s):

c = s[i]
if c == '+’:

t += ' ‘
elif c == '%’:

digit_high, digit_low = s[i + 1], s[i + 2]
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else:

raise ValueError("Invalid encoding")
else: 

t += c 
i += 1

return t 

Hello%2V+World%22

That input exercised the 
code highlighted green

Returned a ValueError
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Test-Input Generation

• Assume a program P which takes in input i
• Goal of automated Test-Input Generation:
• Given P, generate inputs i which expose bugs
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Test-Input Generation

• Assume a program P which takes in input i
• Goal of automated Test-Input Generation:
• Given P, generate inputs i which expose bugs… or other interesting behaviors 
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Bug Detection
Broader than Test-Input Generation

Test Input 
Generation: 
given program 
P(i), find input i

which reveals bug
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Bug Detection
Broader than Test-Input Generation
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Bug Detection
Broader than Test-Input Generation

Bug Detection

Test Input 
Generation: 
given program 
P(i), find input i

which reveals bug

E.g. findings bugs in 
concurrent programs (will 
cover later in the course)
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Program Analysis

Dynamic Analysis

Given a program P, and an input i, 
analyze P while it executes on 
input i: analyze(P(i))

e.g. taint analysis: which parts of the input i are 
used in different parts of the program?

Static Analysis

Analyze a program P independent 
of input i: analyze(P)

e.g. data flow analysis, pattern checking in your 
compiler
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Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Blackbox/Random Fuzzing
• TODOs for next time
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What is Fuzzing/Fuzz Testing?

Aims to solve the test-input generation problem:
“Given program P generate inputs i which expose bugs or other interesting behaviors ”

Fuzzing algorithms are test-input generation algorithms where:
- Fuzzing algorithm has some elements of randomness
- Fuzzing algorithm may use feedback from program execution: P(i) or 

analyze(P(i)) to guide the generation of the next input
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Simplest: Random Fuzzing

Given a a program P, generate input i randomly. 

Called “blackbox fuzzing” because it is not using any feedback from the 
program under test [P(i) or analyze(P(i))] to guide input generation
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Random Fuzzing

Random Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.
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Random Fuzzing

^[¹¨¥:õ;ãC<88>Random Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.
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Random Fuzzing

Ö«¨..<78>àS2bRandom Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.
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Random Fuzzing

$Y&Ó<83>íyøRandom Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.
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Random Fuzzing

^\®´bÖ«4^A·ÞRandom Source
$ bc
Segmentation Fault
$

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.
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Random Fuzzing

^\®´bÖ«4^A·ÞRandom Source
$ bc
Segmentation Fault
$

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.
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Reading for next time: First “Fuzzing” Paper
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Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time
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TODOs

• Sign up for Piazza
• In this course, you will be using Piazza, which is a tool to help facilitate discussions. 

When creating an account in the tool, you will be asked to provide personally 
identifying information. Please know you are not required to consent to sharing this 
personal information with the tool, if you are uncomfortable doing so. If you choose 
not to provide consent, you may create an account using a nickname and a non-
identifying email address, then let your instructor know what alias you are using in 
the tool.

• On Piazza: Respond to sign-up for discussion lead
• Paper response for first paper due Sunday 2:30pm
• Assignment due September 23rd at 6pm 
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