
CPSC 593L: Topics in Programming Languages

Automated Testing, Bug 
Detection, and Program Analysis

September 7th, 2022
Instructor: Caroline Lemieux

Term: 2022W1

Class website: carolemieux.com/teaching/CPSC539L_2022w1.html
Sign up for class piazza: piazza.com/ubc.ca/winterterm12022/cpsc539l

2022-09-08 Caroline Lemieux: CPSC 539L 1

https://www.carolemieux.com/teaching/CPSC539L_2022w1.html
http://piazza.com/ubc.ca/winterterm12022/cpsc539l


Software Has Bugs

2022-09-08 Caroline Lemieux: CPSC 539L 2



2022-09-08 Caroline Lemieux: CPSC 539L 3

Bugs Have Increasing Consequences



2022-09-08 Caroline Lemieux: CPSC 539L 4

Bugs Have Increasing Consequences

Badlock Cloudbleed Dirty COW GHOST Heartbleed StageFright ShellShock



Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”

2022-09-08 Caroline Lemieux: CPSC 539L 5

Costs: 
•>$500 million
• 30,000 X.509 certificates compromised
• 4.5 million patient records compromised
• CRA website shutdown, 900 SINs leaked
•…

Bugs in OpenSSL



Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”

2022-09-08 Caroline Lemieux: CPSC 539L 6

Costs: 
•>$500 million
• 30,000 X.509 certificates compromised
• 4.5 million patient records compromised
• CRA website shutdown, 900 SINs leaked
•…

Bugs in OpenSSL



Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”

2022-09-08 Caroline Lemieux: CPSC 539L 7

Costs: 
•>$500 million
• 30,000 X.509 certificates compromised
• 4.5 million patient records compromised
• CRA website shutdown, 900 SINs leaked
•…

Bugs in OpenSSL



Costs: 
•>$500 million
• 30,000 X.509 certificates compromised
• 4.5 million patient records compromised
• CRA website shutdown, 900 SINs leaked
•…

Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”

CVE-2016-6309
Severity: 9.8 CRITICAL
Introduced: 22 Sep 2016
Discovered: 23 Sep 2016
Fixed: 26 Sep 2016

2022-09-08

“... likely to result in a 
crash, however it could 

potentially lead to execution 
of arbitrary code ...”

Caroline Lemieux: CPSC 539L 8

?
Costs: 
•minimal

Bugs in OpenSSL



Costs: 
•>$500 million
• 30,000 X.509 certificates compromised
• 4.5 million patient records compromised
• CRA website shutdown, 900 SINs leaked
•…

Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”

CVE-2016-6309
Severity: 9.8 CRITICAL
Introduced: 22 Sep 2016
Discovered: 23 Sep 2016
Fixed: 26 Sep 2016

2022-09-08

“... likely to result in a 
crash, however it could 

potentially lead to execution 
of arbitrary code ...”

Caroline Lemieux: CPSC 539L 9

?by honggfuzz
(modern coverage-guided fuzzer)

Costs: 
•minimal

Bugs in OpenSSL



Costs: 
•>$500 million
• 30,000 X.509 certificates compromised
• 4.5 million patient records compromised
• CRA website shutdown, 900 SINs leaked
•…

Heartbleed
Severity: 7.5 HIGH
Introduced: 14 Mar 2012
Discovered: 1 Apr 2014
Fixed: 7 Apr 2014

“... can be used to reveal up 
to 64k of memory to a connected 

client or server ...”

CVE-2016-6309
Severity: 9.8 CRITICAL
Introduced: 22 Sep 2016
Discovered: 23 Sep 2016
Fixed: 26 Sep 2016

2022-09-08

“... likely to result in a 
crash, however it could 

potentially lead to execution 
of arbitrary code ...”

Caroline Lemieux: CPSC 539L 10

?by honggfuzz
(modern coverage-guided fuzzer)

Costs: 
•minimal

Bugs in OpenSSL

In this class, we will study the tools & 
techniques that enabled this rapid discovery



Goal(s) of this Course
Intro to research in automated testing, bug detection, and program analysis

2022-09-08 Caroline Lemieux: CPSC 539L 11



Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L 12



Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L 13



Introductions

• Name, year, advisor/lab/research interests
• Why are you interested in this class?

2022-09-08 Caroline Lemieux: CPSC 539L 14



Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L 15



Goal(s) of this Course

2022-09-08 Caroline Lemieux: CPSC 539L 16

Intro to research in automated testing, bug detection, and program analysis
• Become familiar with key techniques in automated testing

• Class activities: paper responses, lecture

• Read and critically evaluate papers in the field
• Class activities: paper responses, discussion

• Assess which problems are well-suited to different automated testing techniques
• Class activities: paper responses, discussion, lecture, assignment

• Assess, design, and conduct experiments of a program analysis/testing tool
• Class activities: paper responses, discussion, assignment, project

• Design and conduct a research project in program analysis/testing
• Class activities: project



Goal(s) of this Course
Intro to research in automated testing, bug detection, and program analysis
• Become familiar with key techniques in automated testing

• Class activities: paper responses, lecture

• Read and critically evaluate papers in the field
• Class activities: paper responses, discussion

• Assess which problems are well-suited to different automated testing techniques
• Class activities: paper responses, discussion, lecture, assignment

• Assess, design, and conduct experiments of a program analysis/testing tool
• Class activities: paper responses, discussion, assignment, project

• Design and conduct a research project in program analysis/testing
• Class activities: project

2022-09-08 Caroline Lemieux: CPSC 539L 17



Class Format
This class has 3 main components:
• Paper responses
• Assignment
• Course Project

2022-09-08 Caroline Lemieux: CPSC 539L 18



Paper Responses

Before each class (except designated classes), you will read a research 
paper + post a response on Piazza

Paper responses should summarize the paper + your opinions to help 
spark discussion in class

In-class discussions of the paper will be led by a discussion lead 
(student). Goal of the discussion is to deepen the understanding + 
critical analysis of the subject matter.

2022-09-08 Caroline Lemieux: CPSC 539L 19



Class Format
This class has 3 main components:
• Paper responses (35%)
• (20%) Responses, due 18 hours before class 
• (10%) In class participation in discussions + Piazza participation 
• (5%) Discussion lead: read other students’ responses and prepare to lead 

discussion in-class

• Assignment
• Course Project

2022-09-08 Caroline Lemieux: CPSC 539L 20



Assignment

You will implement a random + coverage-guided fuzzer in Python

You will evaluate these fuzzers on different benchmarks, and write up a 
(guided) analysis of the reults

Released today, if you want to take a look!

2022-09-08 Caroline Lemieux: CPSC 539L 21



Class Format
This class has 3 main components:
• Paper responses (35%)
• (20%) Responses, due 18 hours before class 
• (10%) In class participation in discussions + Piazza participation 
• (5%) Discussion lead: read other students’ responses and prepare to lead 

discussion in-class

• Assignment (12.5%)
• Course Project

2022-09-08 Caroline Lemieux: CPSC 539L 22



Project
Open-ended, choose a topic related to automated testing, program analysis, 
bug detection.  

Potential project types (see website for concrete suggestions):
• develop a new tool for testing in a particular domain
• tweaking an existing algorithm: evaluate effect of change
• an extensive re-evaluation of an existing tool
• a reimplementation of an algorithm in a new domain
• or creating a benchmark suite.

You may work in groups, or alone (only recommended if you have a topic 
closely connected to your research field)

2022-09-08 Caroline Lemieux: CPSC 539L 23



Project

Proposal: describe background of the project, goal + intended 
deliverables, evaluation plan, timeline, division of work. 

Check-in: 1 month in, update on any changes to plan since proposal

Writeup: background of the project, intended goal, what was 
accomplished, evaluation results, division of work

Presentation: summarize background and key achievements to class

2022-09-08 Caroline Lemieux: CPSC 539L 24



Class Format
This class has 3 main components:
• Paper responses (35%)
• (20%) Responses, due 18 hours before class 
• (10%) In class participation in discussions + Piazza participation 
• (5%) Discussion lead: read other students’ responses and prepare to lead 

discussion in-class

• Assignment (12.5%)
• Course Project (52.5%)
• (10%) Proposal: due Fri Oct 14
• (2.5%) Check-in: due Fri Nov 18
• (30%) Writeup: due Dec 16
• (10%) Presentation:  week of Dec 5th, length TBD depending on # groups

2022-09-08 Caroline Lemieux: CPSC 539L 25



Attendance + Late Policy

• This class relies on regular in-person attendance of discussions
• Reading papers alone: L
• Discussing papers with others: J

• Paper responses must be submitted on-time
• All other class deadlines (assignment, project) are Fridays at 6pm
• If you anticipate being unable to attend class for some legitimate 

reason, please inform me ahead of time
• Especially if you are signed up as discussion lead

2022-09-08 Caroline Lemieux: CPSC 539L 26



Academic Honesty

• Responses: You may discuss papers with other students, but write 
your paper responses alone. Do not read other students’ responses 
on Piazza before submitting yours.  
• Assignment:You may discuss the assignment with other students, 

but the code + writeup should be your own.  Attribute any code from 
StackOverflow, etc, accordingly.
• Project:You may use other people’s code as a base for your project; 

attribute the source of any piece of code outside of the main project. 
Do not plagiarize any text for your proposal + writeup: it should be 
written by you and your teammates alone.

2022-09-08 Caroline Lemieux: CPSC 539L 27



Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L 28



Automated Testing ≠ Test Automation

2022-09-08 Caroline Lemieux: CPSC 539L 29



Test Automation
https://www.functionize.com/automated-testing

https://www.atlassian.com/devops/devops-tools/test-automation

https://en.wikipedia.org/wiki/Test_automation

2022-09-08 Caroline Lemieux: CPSC 539L 30

https://www.functionize.com/automated-testing
https://www.atlassian.com/devops/devops-tools/test-automation
https://en.wikipedia.org/wiki/Test_automation


This is not what we will cover in class
https://www.functionize.com/automated-testing

https://www.atlassian.com/devops/devops-tools/test-automation

https://en.wikipedia.org/wiki/Test_automation

2022-09-08 Caroline Lemieux: CPSC 539L 31

https://www.functionize.com/automated-testing
https://www.atlassian.com/devops/devops-tools/test-automation
https://en.wikipedia.org/wiki/Test_automation


Automated Testing

• Test-input generation
• Generate test inputs that expose bugs in a program

• Test case / Test Suite Generation
• Generate test suites that expose bugs in a program

2022-09-08 Caroline Lemieux: CPSC 539L 32



Automated Testing

• Test-input generation
• Generate test inputs that expose bugs in a program

• Test case / Test Suite Generation
• Generate test suites that expose bugs in a program

Randoop, EvoSuite: will cover later in class

2022-09-08 Caroline Lemieux: CPSC 539L 33



Automated Testing

• Test-input generation
• Generate test inputs that expose bugs in a program

• Test case / Test Suite Generation
• Generate test suites that expose bugs in a program

Fuzzing, Concolic + Symbolic Execution

2022-09-08 Caroline Lemieux: CPSC 539L 34



Test-Input Generation

• Assume a program P which takes in input i

2022-09-08 Caroline Lemieux: CPSC 539L 35



Example Program P
def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s): 

c = s[i] 
if c == '+’: 

t += ' ‘
elif c == '%’: 

digit_high, digit_low = s[i + 1], s[i + 2] 
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c 
i += 1

return t 

2022-09-08 Caroline Lemieux: CPSC 539L 36



Example Program P

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s): 

c = s[i] 
if c == '+’: 

t += ' ‘
elif c == '%’: 

digit_high, digit_low = s[i + 1], s[i + 2] 
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c 
i += 1

return t 

2022-09-08 Caroline Lemieux: CPSC 539L 37



Example Program P, Input i

Hello%21+World%22

2022-09-08 Caroline Lemieux: CPSC 539L 38

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s): 

c = s[i] 
if c == '+’: 

t += ' ‘
elif c == '%’: 

digit_high, digit_low = s[i + 1], s[i + 2] 
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c 
i += 1

return t 



Example Program P, Input i

Hello%21+World%22

2022-09-08 Caroline Lemieux: CPSC 539L 39

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s): 

c = s[i] 
if c == '+’: 

t += ' ‘
elif c == '%’: 

digit_high, digit_low = s[i + 1], s[i + 2] 
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c 
i += 1

return t 



Example Program P, Input i, Result P(i)

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s):

c = s[i]
if c == '+’:

t += ' ‘
elif c == '%’:

digit_high, digit_low = s[i + 1], s[i + 2]
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else: 

raise ValueError("Invalid encoding") 
else: 

t += c
i += 1

return t

Hello%21+World%22

That input exercised the 
code highlighted green

Returned normally

2022-09-08 Caroline Lemieux: CPSC 539L 40



Example Program P, Input i, Result P(i)

def cgi_decode(s: str) -> str:
"""Decode the CGI-encoded string `s`: * replace '+' by ' ' * replace "%xx" by the character 
with hex number xx. Return the decoded string. Raise `ValueError` for invalid inputs."""

t = ""
i = 0
while i < len(s):

c = s[i]
if c == '+’:

t += ' ‘
elif c == '%’:

digit_high, digit_low = s[i + 1], s[i + 2]
i += 2
if digit_high in hex_values and digit_low in hex_values:

v = hex_values[digit_high] * 16 + hex_values[digit_low] t += chr(v)
else:

raise ValueError("Invalid encoding")
else: 

t += c 
i += 1

return t 

Hello%2V+World%22

That input exercised the 
code highlighted green

Returned a ValueError

2022-09-08 Caroline Lemieux: CPSC 539L 41



Test-Input Generation

• Assume a program P which takes in input i
• Goal of automated Test-Input Generation:
• Given P, generate inputs i which expose bugs

2022-09-08 Caroline Lemieux: CPSC 539L 42



Test-Input Generation

• Assume a program P which takes in input i
• Goal of automated Test-Input Generation:
• Given P, generate inputs i which expose bugs… or other interesting behaviors 

2022-09-08 Caroline Lemieux: CPSC 539L 43



Bug Detection
Broader than Test-Input Generation

Test Input 
Generation: 
given program 
P(i), find input i

which reveals bug

2022-09-08 Caroline Lemieux: CPSC 539L 44



Bug Detection
Broader than Test-Input Generation

Bug Detection

Test Input 
Generation: 
given program 
P(i), find input i

which reveals bug

2022-09-08 Caroline Lemieux: CPSC 539L 45



Bug Detection
Broader than Test-Input Generation

Bug Detection

Test Input 
Generation: 
given program 
P(i), find input i

which reveals bug

E.g. findings bugs in 
concurrent programs (will 
cover later in the course)

2022-09-08 Caroline Lemieux: CPSC 539L 46



Program Analysis

Dynamic Analysis

Given a program P, and an input i, 
analyze P while it executes on 
input i: analyze(P(i))

e.g. taint analysis: which parts of the input i are 
used in different parts of the program?

Static Analysis

Analyze a program P independent 
of input i: analyze(P)

e.g. data flow analysis, pattern checking in your 
compiler

2022-09-08 Caroline Lemieux: CPSC 539L 47



Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Blackbox/Random Fuzzing
• TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L 48



What is Fuzzing/Fuzz Testing?

Aims to solve the test-input generation problem:
“Given program P generate inputs i which expose bugs or other interesting behaviors ”

Fuzzing algorithms are test-input generation algorithms where:
- Fuzzing algorithm has some elements of randomness
- Fuzzing algorithm may use feedback from program execution: P(i) or 

analyze(P(i)) to guide the generation of the next input

2022-09-08 Caroline Lemieux: CPSC 539L 49



Simplest: Random Fuzzing

Given a a program P, generate input i randomly. 

Called “blackbox fuzzing” because it is not using any feedback from the 
program under test [P(i) or analyze(P(i))] to guide input generation

2022-09-08 Caroline Lemieux: CPSC 539L 50



Random Fuzzing

Random Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08 Caroline Lemieux: CPSC 539L 51



Random Fuzzing

^[¹¨¥:õ;ãC<88>Random Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08 Caroline Lemieux: CPSC 539L 52



Random Fuzzing

Ö«¨..<78>àS2bRandom Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08 Caroline Lemieux: CPSC 539L 53



Random Fuzzing

$Y&Ó<83>íyøRandom Source
$ bc

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08 Caroline Lemieux: CPSC 539L 54



Random Fuzzing

^\®´bÖ«4^A·ÞRandom Source
$ bc
Segmentation Fault
$

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08 Caroline Lemieux: CPSC 539L 55



Random Fuzzing

^\®´bÖ«4^A·ÞRandom Source
$ bc
Segmentation Fault
$

B. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of Unix Utilities. Communications of the ACM, 1990.

2022-09-08 Caroline Lemieux: CPSC 539L 56



Reading for next time: First “Fuzzing” Paper

2022-09-08 Caroline Lemieux: CPSC 539L 57



Schedule for Today

• Introductions
• Class format/logistics
• What is automated testing, bug detection, program analysis?
• Black-box/Random Fuzzing
• TODOs for next time

2022-09-08 Caroline Lemieux: CPSC 539L 58



TODOs

• Sign up for Piazza
• In this course, you will be using Piazza, which is a tool to help facilitate discussions. 

When creating an account in the tool, you will be asked to provide personally 
identifying information. Please know you are not required to consent to sharing this 
personal information with the tool, if you are uncomfortable doing so. If you choose 
not to provide consent, you may create an account using a nickname and a non-
identifying email address, then let your instructor know what alias you are using in 
the tool.

• On Piazza: Respond to sign-up for discussion lead
• Paper response for first paper due Sunday 2:30pm
• Assignment due September 23rd at 6pm 

2022-09-08 Caroline Lemieux: CPSC 539L 59


