CPSC 593L: Topics in Programming Languages
Fuzz Testing

September 14,2022
Instructor: Caroline Lemieux
Term: 2022W |

Class website: carolemieux.com/teaching/CPSC539L 2022w | .html

2022-09-14 Caroline Lemieux: CPSC 539L


https://www.carolemieux.com/teaching/CPSC539L_2022w1.html

So far...

We've talked about “random” or “blackbox” fuzz testing

* Recall:“blackbox” refers to the fact that we only observe the external
reactions of the program under test (black-box == opaque-box)

We have read the paper originating the term “fuzz” testing (1990)

But... fuzz testing did not become a big research area in 1990.Why?

2022-09-14 Caroline Lemieux: CPSC 539L



Recall: Bugs in OpenSSL

CVE-2016-6309
Severity: RGN

Introduced: 22 Sep 2016

. Discovered: 23 Sep 2016
(modern coverage-guided fuzzer) N Fixed: 26 Sep 2016

by honggfuzz

{4

. likely to result in a
crash, however it could
potentially lead to execution
of arbitrary code ...”

Costs:
e minimal

2022-09-14 Caroline Lemieux: CPSC 539L



What really popularized fuzz testing?

For researchers:

Coverage-based Greybox Fuzzing as Markov Chain

Marcel Bohme

Van-Thuan Pham

Abhik Roychoudhury

School of Computing, National University of Singapore, Singapore
{marcel,thuanpv,abhik}@comp.nus.edu.sg

ABSTRACT

Coverage-based Greybox Fuzzing (CGF) is a random testing
approach that requires no program analysis. A new test
is generated by slightly mutating a seed input. If the test
exercises a new and interesting path, it is added to the set of
seeds; otherwise, it is discarded. We observe that most tests
exercise the same few “high-frequency” paths and develop
strategies to explore significantly more paths with the same
number of tests by gravitating towards low-frequency paths.

We explain the challenges and opportunities of CGF using
a Markov chain model which specifies the probability that
fuzzing the seed that exercises path ¢ generates an input
that exercises path j. Each state (i.e., seed) has an energy

that specifies the number of inputs to be generated from that
cand Wa chawr +hat (T io cancidarahls mara affiniont if an

2022-09-14

For practitioners:

Pulling JPEGs out of thin air

This is an interesting demonstration of the capabilities of afl; I was actually pretty surprised that it worked!

$ mkdir in_dir
$ echo 'hello' >in_dir/hello

$ ./afl-fuzz -i in dir -o out_dir ./jpeg-9a/djpeg

eated a text file containing just "hello" and asked the fuzzer to keep feeding it to a program that expects a JPEG image

b u i I d S On to P Of utility bundled with the ubiquitous LJG jpeg image library; libjpeg-turbo should also work). Of course, my input
S

It turns out that even the most effective technique is less
efficient than blackbox fuzzing if the time spent generating
a test case takes relatively too long [3]. Symbolic execution
is very effective because each new test exercises a different
path in the program. However, this effectiveness comes at
the cost of spending significant time doing program analysis
and constraint solving. Blackbox fuzzing, on the other hand,
does not require any program analysis and generates several
orders of magnitude more tests in the same time.

Coverage-based Greybox Fuzzing (CGF) is an attempt
to make fuzzing more effective at path exploration without
sacrificing time for program analysis. CGF uses lightweight
(binary) instrumentation to determine a unique identifier for
the path that is exercised by an input. New tests are gener-
ated by slightly mutating the provided seed inputs (we also

esemble a valid picture, so it gets immediately rejected by the utility:

$ ./djpeg '../out_dir/queue/id:000000,orig:hello’

Not a JPEG file: starts with 0x68 0x65

Such a fuzzing run would be normally completely pointless: there is essentially no chance that a "hello" could be ever turned into a
valid JPEG by a traditional, format-agnostic fuzzer, since the probability that dozens of random tweaks would align just right is

astronomically low.

Luckily, afl-fuzz can leverage lightweight assembly-level instrumentation to its advantage - and within a millisecond or so, it notices
that although setting the first byte to oxff does not change the externally observable output, it triggers a slightly different internal
code path in the tested app. Equipped with this information, it decides to use that test case as a seed for future fuzzing rounds:

$ ./djpeg '../out_dir/queue/id:000001,src:000000,0p:int8,pos:0,val:-1,+cov’

Not a JPEG file: starts with 0xff 0x65

Caroline Lemieux: CPSC 539L 4



Is there a seminal paper of coverage-guided
fuzz testing!

No.

This document provides a quick overview of the guts of American Fuzzy Lop.
See README for the general instruction manual; and for a discussion of
motivations and design goals behind AFL, see historical notes.txt.

0) Design statement

American Fuzzy Lop does its best not to focus on any singular principle of
operation and not be a proof-of-concept for any specific theory. The tool can
be thought of as a collection of hacks that have been tested in practice,
found to be surprisingly effective, and have been implemented in the simplest,
most robust way I could think of at the time.

Many of the resulting features are made possible thanks to the availability of
lightweight instrumentation that served as a foundation for the tool, but this
mechanism should be thought of merely as a means to an end. The only true
governing principles are speed, reliability, and ease of use.

2022-09-14 Caroline Lemieux: CPSC 539L



This document provides a quick overview of the guts of American Fuzzy Lop.
See README for the general instruction manual; and for a discussion of
motivations and design goals behind AFL, see historical notes.txt.

0) Design statement

American Fuzzy Lop does its best not to focus on any singular principle of
operation and not be a proof-of-concept for any specific theory. The tool can
be thought of as a collection of hacks that have been tested in practice,
found to be surprisingly effective, and have been implemented in the simplest,
most robust way I could think of at the time.

Many of the resulting features are made possible thanks to the availability of
lightweight instrumentation that served as a foundation for the tool, but this
mechanism should be thought of merely as a means to an end. The only true
governing principles are speed, reliability, and ease of use.

2022-09-14 Caroline Lemieux: CPSC 539L



American Fuzzy Lop does its best not to focus on any singular principle of
operation and not be a proof-of-concept for any specific theory.

2022-09-14 Caroline Lemieux: CPSC 539L



The tool can
be thought of as a collection of hacks that have been tested in practice,
found to be surprisingly effective

2022-09-14 Caroline Lemieux: CPSC 539L



Schedule for Today

* Improving upon pure random fuzzing

* Coverage-guided fuzzing
* a.k.a. greybox fuzzing, a.k.a. coverage-based greybox fuzzing

* Relation to Evolutionary Algorithms

2022-09-14 Caroline Lemieux: CPSC 539L



Schedule for Today

* Improving upon pure random fuzzing

2022-09-14 Caroline Lemieux: CPSC 539L



2022-09-14

What if inputs are too random!?

Random Source

> /\\ /\A

Caroline Lemieux: CPSC 539L

$ bc

{ Segmentation Fault

| ¢




2022-09-14

What if inputs are too random!?

Random Source

> /\\ /\A

Caroline Lemieux: CPSC 539L

g« XML Parser




2022-09-14

What if inputs are too random!?

Random Source

> /\\ AA

Caroline Lemieux: CPSC 539L

Hmmm... that
looks wrong

XML Parser




How to have less random inputs?

Write a specification, generate inputs based on that specification
- Generator-based fuzzing

- Property-based testing
- Grammar-based fuzzing

Start from existing inputs and alter them slightly
- mutational fuzzing

2022-09-14 Caroline Lemieux: CPSC 539L



How to have less random inputs?

Write a specification, generate inputs based on that specification
- Generator-based fuzzing

- Property-based testing
- Grammar-based fuzzing

2022-09-14 Caroline Lemieux: CPSC 539L



Random Fuzzing

Source of )
Randomness

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 16



Generator-Based Fuzzing

Input Generator

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 17



Generator-Based Fuzzing

$ xmllint
Input Generator g —_—

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 18



Generator-Based Fuzzing

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

$ xmllint

v

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 19



Generator-Based Fuzzing

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

$ xmllint

v

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 20



Generator-Based Fuzzing

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

$ xmllint

v

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 21



Generator-Based Fuzzing

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

$ xmllint

v

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing bY)



Generator-Based Fuzzing

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

$ xmllint

v

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 23



Generator-Based Fuzzing

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for i in range(9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():

node.addText(random.nextString())
return node

$ xmllint

v

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 24



Generator-Based Fuzzing

Input Generator

written by developer
conducting testing
(or reuse a suitable one)

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 25



2022-09-14

Property-Based Testing?

Input Generator . — ||

Caroline Lemieux: CPSC 539L

26



2022-09-14

Property-Based Testing

Make pre-conditions/post-conditions explicit in program under test

Input Generator g

P(Input) = Q(Input)

Caroline Lemieux: CPSC 539L

27



2022-09-14

Pre + Post Conditions

public void testMap2Trie(String Kkey,

Map<String,Integer> map){

assumeTrue(map.containsKey (key));

Trie trie

new PatriciaTrie(map); // Map2Trie

assertTrue(trie.containsKey(key));

Caroline Lemieux: CPSC 539L

28



2022-09-14

Pre + Post Conditions

public void testMap2Trie(String Kkey,

Map<String,Integer> map){

P(key, map) assumeTrue(map.containsKey (key));

Trie trie

new PatriciaTrie(map); // Map2Trie

assertTrue(trie.containsKey(key));

}

Caroline Lemieux: CPSC 539L

29



2022-09-14

Pre + Post Conditions

public void testMap2Trie(String Kkey,

Map<String,Integer> map){
P(key, map) assumeTrue(map.containsKey (key));
Trie trie = new PatriciaTrie(map); // Map2Trie
Q(ke)’, maP) assertTrue(trie.containsKey(key));

}

Caroline Lemieux: CPSC 539L

30



Shrinking

public void testMap2Trie(String key,
Map<String,Integer> map){
assumeTrue(map.containsKey (key));
Trie trie = new PatriciaTrie(map); // Map2Trie
assertTrue(trie.containsKey(key));

2022-09-14 Caroline Lemieux: CPSC 539L



2022-09-14

Shrinking

“arbitrarylongstring”

public void testMap2Trie(Strin

5 "KEYy,
Map<String,Integer> map){

assumeTrue(map.containsKey (key));

Trie trie

new PatriciaTrie(map); // Map2Trie

assertTrue(trie.containsKey(key));

}

Caroline Lemieux: CPSC 539L

32



Shrinking

“arbitrarylongstring”

A map containing 1000s of
elements, including
“arbitrarylongstring”

and
“arbitrarylongstring\u0000”

2022-09-14

public void testMap2Trie(Strin

assertTrue(trie.contai

Caroline Lemieux: CPSC 539L

5 "KEY,

Map<String,Intege map){
assumeTrue(map.containsKey (key));
Trie trie = new PatriciaTrie{map);

ey (key));

// Map2Trie

33



Shrinking

“arbitrarylongstring”

A map containing 1000s of
elements, including
“arbitrarylongstring”

and
“arbitrarylongstring\u0000”

2022-09-14

public void testMap2Trie(Strin

5 KEY,
Map<String,I

assumeTrue(map.containsKey (key));
Trie trie = new PatriciaTrie{map);

assertTrue(trie.contai

Caroline Lemieux: CPSC 539L

ey (key));

™
n%ege map){

// Map2Trie

34



Shrinking

“arbitrarylongstring”

o

public void testMap2Trie(String—key,
Map<String_.Inteeer>¥ map){

assumeTrue(map.containsKey (key)); But Wh)”
Trie trie = new PatriciaTriemap)] -yv ie

SCLEL QR ERIY: The input too long to look at manually
A map containing 1000s of |

elements, including
“arbitrarylongstring”

and
“arbitrarylongstring\u0000”

2022-09-14 Caroline Lemieux: CPSC 539L 35



Shrinking

shrink_T(input): produce a list of “shrinked” versions of input
- Call recursively on “smaller” values to shrink as much as possible

2022-09-14 Caroline Lemieux: CPSC 539L

36



Shrinking

shrink_T(input): produce a list of “shrinked” versions of input
- Call recursively on “smaller” values to shrink as much as possible

shrink_point((x,y)) =2 [(0,0), (8, y/2), (x/2, @), (x/2, y/2), (8, y), (0,X)]

2022-09-14 Caroline Lemieux: CPSC 539L

37



Shrinking

shrink_T(input): produce a list of “shrinked” versions of input
- Call recursively on “smaller” values to shrink as much as possible

shrink_point((x,y)) =2 [(0,0), (8, y/2), (x/2, @), (x/2, y/2), (8, y), (0,X)]

Later in class: we will read the paper on delta-debugging, one way
to “shrink” string-type inputs

- Coverage-guided fuzzing uses something like this to “shrink” inputs before mutation

2022-09-14 Caroline Lemieux: CPSC 539L

38



2022-09-14

Pros/Cons of Generator-Based Fuzzing?

Input Generator g

P(Input) = Q(Input)

Caroline Lemieux: CPSC 539L

39



How to have less random inputs?

Write a specification, generate inputs based on that specification
- Generator-based fuzzing

- Property-based testing
- Grammar-based fuzzing

Start from existing inputs and alter them slightly
- mutational fuzzing

2022-09-14 Caroline Lemieux: CPSC 539L

40



How to have less random inputs?

Start from existing inputs and alter them slightly
mutational fuzzing

2022-09-14 Caroline Lemieux: CPSC 539L

4|



9/14/22

Mutational Fuzzing

$ xmllint

Caroline Lemieux --- Expanding the Reach of Fuzzing

42



9/14/22

Mutational Fuzzing

mutate

@uplicate) <baar>f</bar>

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

43



9/14/22

Mutational Fuzzing

mutate

m( <bar>a</bar>
(overwrite)

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

44



9/14/22

Mutational Fuzzing

mutate

<bar/bar>

(delete) ]

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

45



9/14/22

Mutational Fuzzing

mutate

<bar>qgf</bar>

(insert)

Caroline Lemieux --- Expanding the Reach of Fuzzing

$ xmllint

46



Examples of Mutational Fuzzers

ZZUF = MULTI-PURPOSE FUZZER

zzuf is a transparent application input fuzzer. Its purpose is to find bugs in applications by corrupting their user-contributed data
(which more than often comes from untrusted sources on the Internet). It works by intercepting file and network operations and
changing random bits in the program’s input. zzuf’s behaviour is deterministic, making it easier to reproduce bugs. Its main areas
of use are:

@ quality assurance: use zzuf to test existing software, or integrate it into your own software’s testsuite
& security: very often, segmentation faults or memory corruption issues mean a potential security hole, zzuf helps exposing some of them

& code coverage analysis: use zzuf to maximise code coverage M ai ntai n ed 2006_20 I 6

zzuf’s primary target is media players, image viewers and web browsers, because the data they process is inherently insecure, but it was also
successfully used to find bugs in system utilities such as objdump.

zzuf is not rocket science: the idea of fuzzing input data is barely new, but zzuf’s main purpose is to make things easier and automated. You can
see an old, impressive list of bugs found with zzuf.

radamsa &
Project ID: 6703375 [

Y¢ Star 217

radamsa
-0- 457 Commits ¥ 2 Branches <’ 3Tags [ 905 KB Project Storage 77 2 Releases
] ] - 7
a general-purpose fuzzer M a.l ntal n ed 2007 n OW .

Read more

develop radamsa Find file & v

2022-09-14 Caroline Lemieux: CPSC 539L 47



Example

$ echo "1 + (2 + (3 + 4))"




Example

$ echo "1 + (2 + (3 + 4))" | radamsa ——seed 12 -n 4




$ echo "1 + (2 + (3 + 4))"

2022-09-14

Example

| radamsa —--seed 12 -n 4

T

Use this random seed
when mutating

Caroline Lemieux: CPSC 539L

50



$ echo "1 + (2 + (3 + 4))"

2022-09-14

Example

| radamsa ——seed 12 -n 4 ¢

T

Use this random seed
when mutating

Caroline Lemieux: CPSC 539L

— Generate 4 inputs

51



$ echo "1 + (2 + (3 + 4))"

2022-09-14

Example

| radamsa —-seed 12 -n 4 ¢

Caroline Lemieux: CPSC 539L

— Generate 4 inputs

52



$ echo "1 + (2 + (3 + 4))"
1+ (2+ (2+ (3 +4?)

2022-09-14

Example

| radamsa —-seed 12 -n 4 ¢

Caroline Lemieux: CPSC 539L

— Generate 4 inputs

53



$ echo "1 + (2 + (3 + 4))"
1+ (2 4+ (2+ (3 +4?7)
1+ (2 + (3 +74))

2022-09-14

Example

| radamsa ——seed 12 -n 4 ¢

Caroline Lemieux: CPSC 539L

— Generate 4 inputs

54



$ echo "1 + (2 + (3 + 4))"
1+ (2 + (2 + (3 + 4?)
1+ (2 + (3 +74))
18446744073709551615 + 4)))

2022-09-14

Example

| radamsa ——seed 12 -n 4 ¢

Caroline Lemieux: CPSC 539L

— Generate 4 inputs

55



Example

$ echo "1 + (2 + (3 + 4))" | radamsa —--seed 12 -n 4 ¢

1+ (2 4+ (2 + (3 + 4?7)

1+ (2 + (3 +74))

18446744073709551615 + 4)))

1+ (2 + (3 + 170141183460469231731687303715884105727))

2022-09-14 Caroline Lemieux: CPSC 539L

— Generate 4 inputs

56



Example

$ echo "1 + (2 + (3 + 4))" | radamsa --seed 12 -n 4
1+ (2+ (2+ (3 +4?7)

1+ (2 + (3 +74))

18446744073709551615 + 4)))

1+ (2 + (3 + 170141183460469231731687303715884105727))

$ echo "100 x (1 + (2 / 3))" | radamsa -n 10000<}lbC
[...]

(standard_in) 1418: illegal character: ~_
(standard_in) 1422: syntax error

(standard_in) 1424: syntax error

(standard_in) 1424: memory exhausted

[hang]

— Generate 10000 inputs

2022-09-14 Caroline Lemieux: CPSC 539L



Example

$ echo "1 + (2 + (3 + 4))" | radamsa ——seed 12 -n 4
1+ (2 + (2 + (3 + 4?)

1+ (2 + (3 +74))

18446744073709551615 + 4)))
1+ (2 + (3 + 170141183460469231731687303715884105727))

[...]

(standard_in) 1418:
(standard_in) 1422:
(standard_in) 1424:
(standard_in) 1424:

[hang]

2022-09-14

illegal character: ~_
syntax error

syntax error

memory exhausted

Caroline Lemieux: CPSC 539L

58



2022-09-14

Pros/Cons of Mutational Fuzzers!?

$ xmllint
<baar>f</bar>

mutate

(duplicate)'

Caroline Lemieux: CPSC 539L

59



Schedule for Today

* Coverage-guided fuzzing
* a.k.a. greybox fuzzing, a.k.a. coverage-based greybox fuzzing

2022-09-14 Caroline Lemieux: CPSC 539L

60



Coverage-Guided Fuzzing: Recall

The tool can
be thought of as a collection of hacks that have been tested in practice,
found to be surprisingly effective

2022-09-14 Caroline Lemieux: CPSC 539L

6l



2022-09-14

def

Coverage

Line coverage: which lines are executed?

(X, y):
zZ = 2 * x
if z > y:

z =Y

return z + vy

Caroline Lemieux: CPSC 539L

62



2022-09-14

Coverage

Line coverage: which lines are executed?

foo(3,2)

Caroline Lemieux: CPSC 539L

63



2022-09-14

Coverage

Line coverage: which lines are executed!?
Branch coverage: are both sides of an if() executed?

foo(3,7)
if z > y:

Caroline Lemieux: CPSC 539L

64



2022-09-14

Coverage

Edge coverage: coverage of edges in control-flow graph of a program

def foo(x, y):
zZ = 2 * X
if z > vy:
Z =Yy
return z + vy

Caroline Lemieux: CPSC 539L

65



2022-09-14

Coverage

Edge coverage: coverage of edges in control-flow graph of a program

def foo(x, y):
zZ = 2 * X
if z > vy:
Z =Yy
return z + vy

Basic block }

Caroline Lemieux: CPSC 539L

66



2022-09-14

Coverage

Edge coverage: coverage of edges in control-flow graph of a program

def foo(x, y):
zZ = 2 * X
if z > vy:
Z =Yy
return z + vy

Caller
of foo()

return z + vy

Caroline Lemieux: CPSC 539L

67



2022-09-14

Coverage

Edge coverage: coverage of edges in control-flow graph of a program

def foo(x, y):
zZ = 2 * X
if z > vy:
Z =Yy
return z + vy

Caller
of foo()

return z + vy

Caroline Lemieux: CPSC 539L

68



Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

Initial - |I A
ick mutate
e p > ! Inputn' execute . %

save
4 Interesting Feedback? Execution
nput, Feedback,

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 69




Initial
—p

9/14/22

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

Caroline Lemieux --- Expanding the Reach of Fuzzing

70



Initial
—p

9/14/22

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

pick N mutate

>

Caroline Lemieux --- Expanding the Reach of Fuzzing

71



Initial
—p

9/14/22

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

t $ xmllint
execute
l Execution

Feedback

ick

Caroline Lemieux --- Expanding the Reach of Fuzzing

72



Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

$ xmllint

execute

Initial - '
) ick
P > mutate M <a->b</a>

tags_match(input)

tag ~ i a ' -

l Edges
Covered

tag == “b”

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 73



Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

$ xmllint

execute

Initial - '
) ick
P > mutate M <a->b</a>

tags_match(input)

tags_match(input)
is_recoverable(err)

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 74



Initial
—p

9/14/22

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

$ xmllint

execute

ick

tags_match(input)

tag ~ i a ' -

Save

New Edge Covered?
<acb</a> g -

tag == ((b”

Caroline Lemieux --- Expanding the Reach of Fuzzing 75



Initial
—p

9/14/22

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

$ xmllint

execute

ick

tags_match(input)

tag ~ i a ' -

Save

New Edge Covered?
<acb</a> g -

tag == ((b”

Caroline Lemieux --- Expanding the Reach of Fuzzing 76



Coverage-Guided Fuzzing
Relation to Assignment

& |nput

. F A
Initial pick N mutate N _execute | %
— > n

Save

4 Interesting Feedback? Execution
PUtn Feedback,

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing



Coverage-Guided Fuzzing

Relation to Assignment
%
execute |
fuzz_prob

Initial mutate l
' N Interesting Feedback? Execution
Input,” n ==
Feedback,

& |nput,’

Save

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing



Coverage-Guided Fuzzing
Relation to Assignment

A
Input,’ execute >

num_mutants + mutate_input

4 Interesting Feedback? Execution
PUtn Feedback,

Initial oick

Save

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing



Offset
00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080

2022-09-14

0

“Pulling |PEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

1

FF D8

EE DS Fj

00
01
01
01
01
01l

01
01

48
01
01
01
01
01

01
01

2

00
01
01
01
01
01l

01
01

3
EO
00
01
01
01
01
01

01
01

-
00
FF
01
01
01
01
01l

01
01

5
10
DB
01
01
01
01
01

01
01

©
4A
00
01
01
01
01
01l

01
01

'7_
46
43
01
01
01
01
01

01
01

Caroline Lemieux: CPSC 539L

8
49
00
01
01
01
01
01

01
01

S A B C D E

46
01
01
01
01
FF
01

01
01

00
01
01
01
01
DB
01

01
01

01
01
01
01
01
00
01

01
01

01
01
01
01
01
43
01

01
01

01
01
01
01
01
01
01

01
01

00
01
01
01
01
01
01

01
01

ASCII
Allga. .JFIF..... H
3 R - i Y G-
......... AH.C

80


https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

“Pulling |PEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

Input:“hello”

$ ./djpeg '../out dir/queue/id:000000,orig:hello’

Not a JPEG file: starts with 0x68 0x65

2022-09-14 Caroline Lemieux: CPSC 539L


https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

2022-09-14

“Pulling JPEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

Input:“hello”

$ ./djpeg '../out dir/queue/id:000000,orig:hello’

Not a JPEG file: starts with 0x68 0x65

Many mutations later

$

./djpeg

Input:“Oxffello”

"../out_dir/queue/id:000001,src:000000,0p:int8,pos:0,val:-1,+cov’

Not a JPEG file: starts with Oxff 0x65

Caroline Lemieux: CPSC 539L

82


https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

“Pulling JPEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

Input:“hello”

$ ./djpeg '../out dir/queue/id:000000,orig:hello’

Not a JPEG file: starts with 0x68 0x65

Many mutations later

Input:‘ Ho> Covers new edge

$ ./djpeg '../out dir/queue/id:000001,src:000000,0p:int8,pos:0,val:-

Not a JPEG file: starts with Oxff 0x65

2022-09-14 Caroline Lemieux: CPSC 539L


https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

2022-09-14

“Pulling JPEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

Input:“Oxffello”

$ ./djpeg '../out dir/queue/id:000001,src:000000,0p:int8,pos:0,val:-1,+cov’

Not a JPEG file: starts with O0xff 0x65

Many mutations later

Input:“Oxffoxd811o”

../out_dir/queue/id:000004,src:000001,0p:havoc,rep:16,+cov’

$ ./djpeg
Premature end of JPEG file

JPEG datastream contains no image

Caroline Lemieux: CPSC 539L

84


https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

2022-09-14

“Pulling JPEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

Input:“Oxffello”

$ ./djpeg '../out dir/queue/id:000001,src:000000,0p:int8,pos:0,val:-1,+cov'
Not a JPEG file: starts with O0xff 0x65

Many mutations later

Input:‘ Xff@Xd8 iy Covers new edge
$ ./djpeg '../out_dir/queue/id:000004,src:OOOOOl,op:havoc,r

Premature end of JPEG file

JPEG datastream contains no image

Caroline Lemieux: CPSC 539L

85


https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

2022-09-14

“Pulling |PEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

Input:“Oxffoxd811o”

$ ./djpeg '../out dir/queue/id:000004,src:000001,o0p:havoc,rep:16,+cov’
Premature end of JPEG file

JPEG datastream contains no image

6 hours of mutations + saving later...

Input: a blank JPEG 3 pixels wide, 786 pixels tall

$ ./djpeg '../out dir/queue/id:001282,src:001005+001270,0p:splice,rep:2,+cov' >.tmp; 1ls -1 .tmp

-rw-r--r—- 1 lcamtuf lcamtuf 7069 Nov 7 09:29 .tmp

Caroline Lemieux: CPSC 539L

86


https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

I )
-;f+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++M

e e o o e G O O e e o R O o o e o ot 2 o o o % 2 G o 0% e o R G G e G O G o O o e 2 K o e o ot 2 o o o % 2 G o 0% e o R G G e G O G o O o e o 2 4 O o e o ot 0 2 o o o % 2 o o 0% e o R G G G O G G o

e, 2, 2, e o e e e e 2" 2 2 2, e e ", o, e e, 0 e e, 2 e 2, 2, 2 2, e, e e, 0 e 2, 2 e 5 2 2, A, e, 2 e 4, 8 2 5 e 2, 2, 2, 8, 8 e, a2
Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo Lo

i@ﬂ+:++£$+I+:++£$+:+:++£$+x+:+"’-F$$”+x+:+"’-F$$"+:+:+"’-F$$”+x+:+"’-F$$”+x+:+"’-F$$"+I+:+"’-F$$”+I+:+"’-F$$”+:+:+"’-F$$”+x+:+"’-F$$”+x+:+"’-F$$"+I+:+"’-F$§”+I+:+"’-F$$”+:+:+"’-F$$”+x+:+"’-F$$”+x+:+"’-F$$"+:+:+"’-F$$”+x+:+"’-F$$”+x+:+"’-F$$"+I+:+"’-F$$”+I+:+"’-F$$”+:+:+"’-F$$”+x+:+"’-F$$”+x+:+"’-F$$"+I+:+"’-F$§”+I+:+"’-F$$”+:+:+"’-F$$”+x+:+"’-F$$”+x+:+"’-F$$"+:+:+"’-F$$”+x+:+"’-F$$”+x+:+"’-F$$"+I+:+"’-F$$”+I+:+"’-F$$”+:+:++£$+x+:++£$+x+:++£$+x+:++#

SSSSSSESSSSS NSNS NSNS S S S S S S S B S S N B S B S S S S B S B B S S B S B S B B B S S S B B S B S S B B B

“Pulling JPEGs out of Thin Air”

https://lcamtuf.blogspot.com/2014/1 | /pulling-jpegs-out-of-thin-air.html

e e e |
NI TTREE

e



https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

Pros/Cons of Coverage-Guided Fuzzing

Initial : l A
ick mutate
—_——— p . A nput, execute | %

save
Interesting Feedback? Execution
Input,’ n -
Feedback,

9/14/22 Caroline Lemieux --- Expanding the Reach of Fuzzing 88




Schedule for Today

* Relation to Evolutionary Algorithms

2022-09-14 Caroline Lemieux: CPSC 539L

89



Coverage-guided Fuzzing vs. Evolutionary
Algorithms

F Initialization
%

ick mutate B execute
—= ——— Qe >
_ Interesting Feedback? Execution Test data Resources Reinsertion
< Feedback found exhausted
n
Figure 6. Overview of the main steps of a Genetic Algorithm

Circa 2014 Circa 201 I;

Phil McMinn.“Search-Based Software Testing:
Past, Present and Future”

A

[
»

Fitness

evaluation Crossover

save

Mutation

2022-09-14 Caroline Lemieux: CPSC 539L 90



Coverage-guided Fuzzing vs. Evolutionary
Algorithms

save

Initialization
Fitness
<Interesting Feedback? Execution Test data Resources Mutation
Feedback found exhausted

Figure 6. Overview of the main steps of a Genetic Algorithm

Circa 2014 Circa 201 I;

Phil McMinn.“Search-Based Software Testing:
Past, Present and Future”

2022-09-14 Caroline Lemieux: CPSC 539L 9]



Coverage-guided Fuzzing vs. Evolutionary
Algorithms

Initialization

A

[
»

Fitness
evaluation

A
pick mutate execute g
Input, >
_ Interesting Feedback? Execution Test data Resources Reinsertion Mutation
< Feedback found exhausted
n
Figure 6. Overview of the main steps of a Genetic Algorithm

Circa 2014 Circa 201 I;

Phil McMinn.“Search-Based Software Testing:
Past, Present and Future”

save

2022-09-14 Caroline Lemieux: CPSC 539L 92



Coverage-guided Fuzzing vs. Evolutionary

save

Circa 2014

2022-09-14

_M‘ Interesting Feedback? Execution
Feedback,

Algorithms

Initialization

A

—

Crossover

Fitness
evaluation

Test data Resources Reinsertion Mutation

found exhausted

Figure 6. Overview of the main steps of a Genetic Algorithm

Circa 201 I;

Phil McMinn.“Search-Based Software Testing:

Past, Present and Future”

Caroline Lemieux: CPSC 539L

93



Coverage-guided Fuzzing vs. Evolutionary
Algorithms

Eick mutate l

———— R
_ Interesting Feedback? Execution Test data Resources Reinsertion Mutation
< Feedback found exhausted
n
Figure 6. Overview of the main steps of a Genetic Algorithm

Circa 2014 Circa 201 I;

Phil McMinn.“Search-Based Software Testing:
Past, Present and Future”

Fitness '
i evaluation ‘ @ Crossover

7\ "\

save

2022-09-14 Caroline Lemieux: CPSC 539L 94



Coverage-guided Fuzzing vs. Evolutionary
Algorithms

Initialization

A

A
ick mutate

Fitness
evaluation

Test data Resources Reinsertion
found exhausted

Figure 6. Overview of the main steps of a Genetic Algorithm

Circa 2014 Circa 201 I;

Phil McMinn.“Search-Based Software Testing:
Past, Present and Future”

Crossover

save

_ Interesting Feedback? Execution Mutation

) Feedback,

2022-09-14 Caroline Lemieux: CPSC 539L 95



Evolutionary Algorithms

* In traditional genetic algorithms, fithess is a number
* Higher fitness == better

* Fitness of an input does not change over time

We will study in this class one use of evolutionary algorithms for test suite generation

2022-09-14 Caroline Lemieux: CPSC 539L

96



Coverage-Guided Fuzzing

* Choose inputs to save if they increase coverage
* New coverage == better

* An input is not interesting if it is re-discovered

No constantly increasing fitness... more akin to “novelty search”

2022-09-14 Caroline Lemieux: CPSC 539L

97



2022-09-14

Novelty Search

RESEARCH-ARTICLE

Novelty search: a theoretical perspective

Authors: Stephane Doncieux, Alban Laflaquiére, Alexandre Coninx Authors Info & Claims

GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference ¢ July 2019 « Pages 99—
106 e https://doi.org/10.1145/3321707.3321752

Online: 13 July 2019 Publication History

Caroline Lemieux: CPSC 539L

98



2022-09-14

Novelty Search

RESEARCH-ARTICLE

Novelty search: a theoretical perspective

Authors: Stephane Doncieux, Alban Laflaquiére, Alexandre Coninx Authors Info & Claims

Abstract
Novelty Search is an exploration algorithm driven by the novelty
of a behavior. The same individual evaluated at different
generations has different fitness values.

Caroline Lemieux: CPSC 539L

99



2022-09-14

Novelty Search

RESEARCH-ARTICLE

Novelty search: a theoretical perspective

Authors: Stephane Doncieux, Alban Laflaquiére, Alexandre Coninx Authors Info & Claims

Abstract

We assert that
Novelty Search asymptotically behaves like a uniform random
search process in the behavior space.

(does this also hold for coverage-guided fuzzing? unknown)

Caroline Lemieux: CPSC 539L

100



