Semantic Fuzzing with Zest

Rohan Padhye Caroline Lemieux Koushik Sen Mike Papadakis Yves Le Traon
University of California, University of California, University of California, ~ University of University of
Berkeley Berkeley Berkeley Luxembourg Luxembourg

Useless Backstory

Sometime In 2017

| know AFL! I’ll build
the performance-
fuzzing AFL part!

| have a grant on
finding performance
vulnerabilities in Java!

| have students! | built
concolic executors for
Java! Let’s
collaborate!

sea of profs
| know Java! | will

build the Java fuzzing
part of it.

land of grad students

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 2

9/19/2024

Later in 2017

That’s not really
security.... But ok...

Detecting Algorithmir Comnlexitv Attacks via Fuzz Testing

Caroline Lemieux
UC Berkeley

ABSTRACT

Algorithmic complexity attacks are a form of del
tacks which exploit the difference between avera
performance of a deployed algorithm. In this p1
an automated attack method which uses fuzz test
potentially causing complexity attacks. We imple
as an extension of the popular fuzz testing tool .
can be used on C/C++ programs to find time ¢
or on Java programs to find time and space com)
find our method performs favorably against pre
fuzz testing to find complexity attacks. We also ¢
of different feedback modes on the performanc
‘We confirm that our method can automatically fi
Finally, our method automatically found new co
bilities in JDK methods, awaiting further confirm

1 INTRODUCTION

Many popular algorithms suffer from highly vari
between their best, average, and worst case in
examples include sorting algorithms. Insertion :
runtime in O(n) and worst-case in O(n®); quicl
case runtime in O(nlogn) and worst-case in O()
of algorithms with such variable performance ca
rity vulnerabilities in a system which takes in
performance bottlenecks are major, the system
ble to major slowdown or even a DoS-style attac
needs to do is figure out which inputs trigger
the program. Such attacks are known as algori
attacks. Figure 1 outlines the attack brocedure. U

Detecting Algorithmic Complexity Attacks via Fuzz Testing

nput Length (bytes)
Figure 4: Maximum number of swaps performed while sort-

ing generated inputs with insertion sort for SlowFuzz and
AFL-MaxCts. Points illustrate average over 5 experiments.

Max. Number of Branches, Insertion Sort

b+

+ AFL-MaxCt

40
Input Length

g

Figure 5: i number of b d while sort-
ing generated inputs for SlowFuzz and AFL-MaxCts. Points
illustrate average over 5 experiments.

all programs, and should be closely correlated to total instruction
count. We see the results for insertion sort in Figure 5. We see

Caroline Lemieux --- Expanding the Reach of Fuzzing

Max. Number of Branches, email regex

35000

£ 30000 .

+ AFL-MaxCts
5000
SlowFuzz 4
10000 *
00 "
¥ Higher is better
o 10 2 30 4 S0 60 70
Input Length
Figure 6: Maxi number of b h d match-

ing generated inputs to an email regex for SlowFuzz and
AFL-MaxCts. Points illustrate average over 5 experiments.

Max. Number of Branches, PCRE url regex

+ AFL-MaxCts

SlowFuzz +

Higher is better

40 60 80
Input Length

h d

Figure 7: i number of b match-
ing generated inputs to a URL regex for SlowFuzz and
AFL-MaxCts. Points illustrate average over 5 experiments.

AFL-MaxCts to find inputs exercising quadratic match time (typi-

Can | do performance
fuzzing of C programs
as my course project?

PerFFuzz: Automatically Generating Pathological Inputs

ABSTRACT

Performance problem:
programs are provided
A large body of work
via statistical profiling
inputs in the first pla
2 tomatically generate i
13 across program locati
14 Fuzz generates inputs

multi-dimensional fee:
tion counts for all prog
find a variety of inputs
and (2) generate inpu
than previous approac
also effective at gener
complexity vulnerabili
a popular coverage-gu
four real-world C prog
We find that PerfFuzz ¢

at exercise the most

Wow! Distinguished
paper award! | don’t
need even to help you
guys write papers
anymore!

9/19/2024

Unlike previous appro: ‘
characteristic such as t .

Early (Early) 2018

We can submit this
performance fuzzing
stuff just for C to
ISSTA!

Anonymous Author(s)

do these inputs come from? The most commonly chosen sources
inclnde (1) eneciallv hand-rrafted narformance tecte [44 461 (2)

[ISSTA 2018] Accepted paper #123 "PerfFuzz: Automatically X 8 B
Generating..." (External

ISSTA 2018 HotCRP <noreply@isstal8.hotcrp.com> Sun, Apr 29, 2018, 11:54PM
to Caroline, Dawn, Koushik, Rohan, eric.bodden ~

Dear authors,

[ISSTA 2018] Distinguished Paper Award for paper #123

The 27th Interr
2018) program "PerfFuzz: Automatically Generating...'

been accepted

External

Titlo: BEEE () ISSTA 2018 HotCRP <noreply@isstal8.hotcrp.com> Wed, May 30, 2018, 10:42PM
tte: ke . to Caroline, Dawn, Koushik, Rohan, eric.bodden, f.tip, karim.ali ~

Authors: Ca
Rohar Dear authors,
oust
\yn | am very pleased to inform you that your paper entitled...
PerfFuzz: Automatically Generating Pathological Inputs
i ... has been awarded an ACM SIGSOFT Distinguished Paper Award!
jon

Congratulations!

Any ACM conference can award up to 10% of accepted papers that way. At
ISSTA 2018, three papers will be receiving such an award.

Caroline Lemieux --- Expanding the Reach of Fuzzing

Later in 2018

So.... What about the

: QF: Generating Semantically Valid Test Inputs using Parametric .
. 8 y P 8 Java thing?

Generators and Coverage-Guided Fuzzing

Anonymous Author(s)

ABSTRACT
Programs expecting str FQFC/ESF 2018 - Nintifiratinn far nanar 217 - RE IFCT S 7
My major concern is that it is unclear what exactly this paper has 8101AM f 6

achieved. In the main technical part, Section 3.1 describes mutating a
byte sequence. Obviously, any byte sequence could be converted into a
text (or a program) deterministically depending on the mapping. The

key question here is why one wants to mutate a byte sequence rather
than the text in the first place.

age-Guided Fuzzing

" Maven, Ant, the Google ' (1) What exactly has been achieved? In particular, what can JQF do while
, attains statistically sigr "
0 alid inputs compared tc The competition w : : : :

| > vidipus compured: ctbrmicsions (Lo, the previous approaches (e.g., the generator described in Figure 3)

| = ACM Reference Format: process, with eacl cannot?

Y Anonymous Author(s). 201:

3 using Parametric Generato Sweden and disct

3 of The 26th ACM Joint Eurt conditionally accepicu \avicpiaive 1awc v 21 05

s posium on the Foundations ¢

3 United States, 4-9 Novembe

: hitps://doi.org/10.1145/nnx We enclose below the reviews on your paper, which also include the META-REVIEW which summarizes the discussion on your
paper.

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

9/19/2024

Zest: Validity Fuzzing and Parametric Generators

Abstract—Programs
of both a syntactic an
into an internal data
which conducts check
core logic of the progr:
like coverage-guided fi
tend to produce inpu
two stages. We propos
effectively explores the
Zest combines two k
introduce validity fuzzi
semantically valid inp
ators, which convert in
as a sequence of numb
syntactically valid XM
mutations to map to ¢
test inputs. We imple:
AFL and QuickCheck,
tools, on six real-worl
BCEL, ScalaChess, tt
Rhino. We find that |
semantic analysis stag
we find 18 new bugs
that are uniquely four

Later (Later) in 2018

for Effective Random Testing

ICSE 2019 notification for paper 398 e &

® Technical Track <icse2019-technical@easychair.org> Tue, Dec 11,2018, 10:11PM % €«

. to Caroline

Dear Caroline,

Thank you for submitting your paper

Zest: Validity Fuzzing and Parametric Generators for Effective Random Testing

to the ICSE 2019 Technical Track.

We regret to inform you that your paper has not been accepted to the program. Each paper was reviewed by at least 3
Program Committee (PC) members and the decision overseen by a member of the Program Board (PB). Out of 529
submissions, 109 papers were accepted (an acceptance rate of 21%). The reviews as well as a meta-review written by the PB

member summarizing the discussion are included below. We hope that you find the feedback provided in the reviews and
meta-review useful, and that it will help you to revise your work for a future submission.

Caroline Lemieux --- Expanding the Reach of Fuzzing

Again, Confusion about “Parametric

1"

Ben, can you read this
section on parametric
generators? And tell me
how confusingitis on a
scale of 1-10

It is 7/10
confusing

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

B. Parametric Generators

We illustrate the intuition behind parametric generators by
returning to the XML generator from Figure 2. Fundamentally,
the behavior of the generator depends on the values produced
by the pseudo-random number source that it is given, refer-
enced by variable random in the example.

Let us consider one particular instance where random
produces the sequence oy of pseudo-random numbers, with
values: 3,102,111,111,2,3,...,0,0. We can see how the
numbers returned by random—i.e. those in o;—influence
the XML generator’s behavior by looking at the generator’s
execution trace, here simplified to a sequence of line numbers
from Figure 2 and the effect on the generated XML:

(Line 27) Root node: name length = 3

(Line 30) Root node: name[0] = 182 (ASCII 'f’)
(Line 30) Root node: name[1] = 111 (ASCII ’0’)
(Line 30) Root node: name[2] = 111 (ASCII ’'0o’)

(Line 14) Root node: number of children = 2
(Line 11) First child: name length = 3

(Line 19) Second child: embed text = @ (False)
(Line 19) Root node: embed text = @ (False)

9/19/2024

ICSE'19 Version

And the XML produced by this instance, say 1, looks like:
<foo><bar>Hello</bar><baz /></foo>

Notice that the generated test-input is simply a function
of the numbers produced by the pseudo-random source. A
parametric generator is a function that, instead of relying on
parameters from a random number generator, takes a sequence
of numeric values such as o1—the parameter sequence—and
produces a structured input, such as the XML x;.

The following key observation allows us to use parametric
generators to map low-level mutations in the parameter space
to high-level mutations in the structured input space. If a
parameter sequence o, which leads to the generation of input
x, is slightly mutated to produce a new sequence o', then the
corresponding generated input 2’ will be a structured mutant
of x in the space of synctactically valid inputs. That is, if ¢’
is similar to o, then 2z’ will likely share some structure with
x. Therefore, by mutating the stream of parameters fed to
a parametric generator, we can perform high-level structured
mutations on inputs while retaining their syntactic validity.

To illustrate this, suppose that the second value in the
sequence o above is randomly set to 87, producing the
sequence o2: 3,87, 111, 111, 2,3,...,0,0. When o3 is passed
to the parametric generator, the generator produces za:

<Woo><bar>Hello</bar><baz /></Woo>

Caroline Lemieux --- Expanding the Reach of Fuzzing

Mutational fuzzing with parametric generators: Con-
cretely, we combine parametric generators and validity fuzzing
in the following way. Let p4 : A — T be a program that takes
input of type A and produces a result of type 7'. In the example
from Figure 3, the test harness accepts inputs of type String
and produces a test result. Therefore, A is the set of all strings,
and T = {pass, fail, invalid}. Let g4 : ¥ — A represent a
parametric generator that takes a parameter sequence o € %
and produces a value in A. The generator in Figure 2 can be
represented as a parametric generator where A is the set of all
strings. Now, we can compose g4 and p4 to produce a new
program py; : 2 — 7T that takes as input a parameter sequence
and produces a test result: py; = pa 0 ga.

We can now run Algorithm 2 with the program p := py,
and I := {o,}, an initial parameter sequence o, that is
randomly generated. Thus, the fuzzing algorithm mutates and
saves parameter sequences instead of test inputs, while using
feedback from the execution of the underlying program and the
validity of the inputs produced by the parametric generators.
At the end of the fuzzing loop, the returned corpus V now
contains parameter sequences corresponding to valid inputs.
Those inputs can be retrieved as V4 = {ga(c) | c € V}. In
our experimental evaluation, we refer to this combination of
parametric generators and validity fuzzing as Zestyg.

3.1 Parametric Generators

Before defining parametric generators, let us return to the ran-
dom XML generator from Figure 2. Let us consider a particular
path through this generator, concentrating on the calls to nextInt,
nextBool, and nextChar. The following sequence of calls will be
our running example (some calls ommitted for space):

Call — result Context
random.nextInt (1, MAX_STRLEN) — 3 Root: name length (Line 26)
random.nextChar() — ‘f’ Root: name[@] (Line 29)
random.nextChar() — ‘o’ Root: name[1] (Line 29)
random.nextChar() — ‘o’ Root: name[2] (Line 29)

random.
random.

random.
random.

nextInt (MAX_CHILDREN) — 2
nextInt(1, MAX_STRLEN) — 3

Root: # children (Line 13)
Child 1: name length (Line 26)

nextBool() — False
nextBool() — False

Child 2: embed text? (Line 19)
Root: embed text? (Line 19)

The XML document produced when the generator makes this
sequence of calls looks like:

x1 = <foo><bar>Hello</bar><baz /></foo>.

9/19/2024

ISSTA'19 Version

In order to produce random typed values, the implementations of
random. nextInt, random.nextChar, and random.nextBool rely
on a pseudo-random source of untyped bits. We call these untyped
bits “parameters”. The parameter sequence for the example above,
annotated with the calls which consume the parameters, is:

o1 = 0000 0010 0110 @110 0000 0000
—— —— ——
nextInt(1,...)—3 nextChar()—*f"’ nextBool () —False

For example, here the function random.nextInt(a, b) consumes
cight bit parameters as a byte, n, and returns n% (b — a) + a as
a typed integer. For simplicity of presentation, we show each
random. nextXYZ function consuming the same number of param-
eters, but they can consume different numbers of parameters.

We can now define a parametric generator. A parametric gener-
ator is a function that takes a sequence of untyped parameters such
as o1—the parameter sequence—and produces a structured input,
such as the XML x1. A parametric generator can be implemented

Caroline Lemieux --- Expanding the Reach of Fuzzing

I

(2) Bit-level mutations on untyped parameter sequences corre-
spond to high-level structural mutations in the space of syn-
tactically valid inputs.

Observation (1) is true by construction. The random.nextXYZ
functions are implemented to produce correctly-typed values no
matter what bits the pseudo-random source-or in our case, the
parameters—provide. Every sequence of untyped parameter bits
correspond to some execution path through the generator, and
therefore every parameter sequence maps to a syntactically valid
input. We describe how we handle parameter sequences that are
longer or shorter than expected with the example sequences o3 and
o4, respectively, below.

To illustrate observation (2), consider the following parameter
sequence, oz, produced by mutating just a few bits of oy:

o = 0000 0010 01@1 0111 ... 0000 0000.

e —
nextChar()— ‘W’
As indicated by the annotation, all this parameter-sequence mu-
tation does is change the value returned by the second call to
random. nextChar () in our running example from ‘f’ to ‘W’. So
the generator produces the following test-input:

x2 = <Woo><bar>Hello</bar><baz /></Woo>.

9/19/2024

ABSTRACT

Programs expecting structured inputs
tic analysis stage, which parses raw i
stage, which conducts checks on th
the core logic of the program. Gener:
lineage of QuickCheck are a promis
syntactically valid test inputs for the
fectively explore the semantic analy
tedious manual tuning of the gener:
nique which automatically guides Q
generators to better explore the sema
grams. Zest converts random-input

parametric generators. We present t}
in the untyped parameter domain m
the input domain. Zest leverages this
based mutational fuzzing, directed by
of code coverage and input validity
and evaluate it against AFL and Qu
benchmarks: Maven, Ant, BCEL, the

Mozilla Rhino. We find that Zest out
in terms of code coverage within th
these benchmarks. Further, we find
analysis stage across these benchma
technique in finding these bugs, req
average to find each such bug.

Now in 2019

Semantic Fuzzing with Zest

Anonymous Author(s)

[ISSTA 2019] Paper #272 "Semantic Fuzzing with Zest" (Extemnal

® ISSTA 2019 HotCRP <noreply@isstal9.hotcrp.coms
<P to Caroline, Koushik, Mike, Rohan, Yve, amoeller «

Dear authors,

The ISSTA 2019 program committee is delighted to inform you that your paper
#272 has been accepted to appear in the conference.

Title: Semantic Fuzzing with Zest
Authors: Rohan Padhye (University of California, Berkeley)
Caroline Lemieux (University of California, Berkeley)
Koushik Sen (University of California, Berkeley)
Mike Papadakis (University of Luxembourg)
Yves Le Traon (University of Luxembourg)
Paper site: https://issta19.hotcrp.com/paper/272

Your paper was one of 29 accepted out of 142 submissions. (3 more
submissions have been conditionally accepted.) Congratulations!

Caroline Lemieux --- Expanding the Reach of Fuzzing

Wed, May 1, 2019, 3:11AM

Technique

Can we get higher-level mutations?
with more information about input structure?

Initial pick mutate execute -
i, : ¥ oy e

save
Interesting Feedback? Execution
Input,” N]
Feedback,

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

12

Generators as Input Structure Specification

A

Input Generator

9/19/2024

How to Get Mutations?

def genXML(random):

tag = random.choice(tags)

node = XMLElLement(tag)

num_child = random.nextInt(©, MAX_CHILDREN)

for 1 in range(©9, num_child):
node.addChild(genXML(random))

if random.nextBoolean():
node.addText(random.nextString())

return node

Caroline Lemieux --- Expanding the Reach of Fuzzing

14

9/19/2024

Generator: Source of Randomness = Input

def genXML(random):
#tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for 1 in range(©9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString())
return node

Caroline Lemieux --- Expanding the Reach of Fuzzing

15

9/19/2024

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for 1 in range(©9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString())
return node

foo

—n

</foo>

Caroline Lemieux --- Expanding the Reach of Fuzzing 16

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
- num_child = random.nextInt(©, MAX_CHILDREN)
for 1 in range(©9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString())
return node

foo

—n

</foo>

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 17

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)

node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN) %
for 1 in range(©9, num_child):
m) node.addChild(genXML (random))
if random.nextBoolean():

node.addText(random.nextString())
return node

—n

</foo>

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 18

9/19/2024

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for 1 in range(©9, num_child):
m) node.addChild(genXML (random))
if random.nextBoolean():

node.addText (random.nextString())

return node <foo>
<bar/>

—n

</foo>

Caroline Lemieux --- Expanding the Reach of Fuzzing 19

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for 1 in range(©9, num_child):
node.addChild(genXML(random))
‘ if random.nextBoolean():

node.addText (random.nextString()) ?

return node <foo>
<bar/>

<baz>“xyz”</baz>
</foo>

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 20

9/19/2024

Generator: Source of Randomness = Input

def genXML(random):
tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(©, MAX_CHILDREN)
for 1 in range(©9, num_child):
node.addChild(genXML(random))
if random.nextBoolean():
node.addText(random.nextString()) 3
- return node <foo>)

<bar/>

<baz>“xyz”</baz>
</foo>

Caroline Lemieux --- Expanding the Reach of Fuzzing

21

Source of Randomness

Infinite Bit-Sequence

pseudo-random bits: 00000011 011001100110111101101111 0000 0010 ...

def genXML{(irandom):

tag = random.choice(tags)
node = XMLElLement(tag)
num_child = random.nextInt(6, MAX CHILDREN)
for i in range(0, num_chlld).’
node.addChiLd(genXMLgnaﬁdom)
if random. nextBooLean(ff
node. addTth(random nextString() L

return -_ _______

=
_—

-
-

-

<foo>
<bar/>
<baz>“xyz”</baz>
</foo>

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 22

Bit Mutations = Structured Input Mutations

9/19/2024

pseudo-random bits: 00000011 011001100110111101101111 0000 0010 ...

def genXML{(irandom):

tag = random.choice(tags)
node = XMLELement(tag) _-"
num_child = random.nextInt(6, MAX CHILDREN)
for 1 in range (0, num_chlld).’ -~
node.addChild(genXML(rafidom)
if random. nextBooLean(ff
node. addTth(random nextString() L

return -_ _________ <foo>
<bar/>
<baz>“xyz”</baz>
</foo>

Caroline Lemieux --- Expanding the Reach of Fuzzing

23

Bit Mutations = Structured Input Mutations

9/19/2024

pseudo-random bits: 00000011 0101 01110110111101101111 0000 0010 ...

def genXML{(irandom):

LT3 8~andom. choicel)
node = XMLELement(tag) _-"
num_child = random.nextInt(6, MAX CHILDREN)
for 1 in range (0, num_chlld).’ -~
node.addChild(genXML(rafidom))
if random. nextBooLean(ff
node. addTth(random nextString() L

return -_ ___________

<bar/>
<baz>“xyz”</baz>
</wo0>

Caroline Lemieux --- Expanding the Reach of Fuzzing

24

Params — Generator ——

JQF/Zest: Integrate Generator + C

seeds

Initial pick mutate execute A
i,y . gy e § »

save
Interesting Feedback? Execution

Input,” N <
Feedback,

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 25

JQF/Zest: Integrate Generator + CGF

seeds

execute
Initial ick mutate l input -
e PIcK, . —» Generator _— ~_,

4 Interesting Feedback? Execution .
aram>sn Feedback,

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 26

save

JQF/Zest: Integrate Generator + CGF

seeds
execute
Initial ick LA ' Input -
—_— PIcK, . —» Generator _— —__,
A
Higher-level mutations via generator
save

4 Interesting Feedback? Execution .
ardmsn Feedback,

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 27

Zest: Add Validity Feedback Based on

seeds

Initial
—p

save

9/19/2024

assume

F execute N
. input
pick mutate —> Generator _ Pt %

Higher-level mutations via generator

Params,’ u

Save if new coverage)
R Execution «
Save if new coverage Feedbacky

for a valid input

“Validity Feedback”

Caroline Lemieux --- Expanding the Reach of Fuzzing 28

What's valid? assume?

@Property

1

2 void testProgram(@From(XMLGenerator.class) XMLDocument xml) {
3 Model model =_readModel (o 0 inog());
4
5

Pin P(x) => Q(x)

assert (runModel (model) == success);

£ a e

P(xml): .
readModel(xml.ToString()) != null input);
Q(xml):

runModel(readModel(xml.ToString)) == success -

15 %

Figure 3: A junit-quickcheck property that tests an XML-
based component.

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

29

9/19/2024

Use of S in Mutate()

Algorithm 1 Coverage-guided fuzzing.

Input: program p, set of initial inputs I
Output: a set of test inputs and failing inputs
: ST

2 Fe0

3: totalCoverage «— 0

4: repeat

5: for input in § do

6: for 1 < i £ NUMCANDIDATES(input) do
7: candidate «— MUTATE(input, S)

8: coverage, result « RUN(p, candidate)
9: if result = FAILURE then

10: F «— FU candidate

11: else if coverage ¢ totalCoverage then
12: S «— 8 U {candidate}

13: totalCoverage «— totalCoverage U coverage

14: until given time budget expires
15: return S, F

The number of new inputs to generate in this round (Line 6) is de-
termined by an implementation-specific heuristic. CGF generates
new inputs by applying one or more random mutation operations
on the base input (Line 7). These mutations may include operations
that combine subsets of other inputs in S. The given program is

Caroline Lemieux --- Expanding the Reach of Fuzzing

30

9/19/2024

Are bit mutations smart at all?

 No.

* We had a "smarter” mutat
big part of the technical ¢

Ao Li
Carnegie Mellon University
M Pittsburgh, USA

* But it was no better than 1 e
Caroline Lemieux

University of British Columbia
Vancouver, Canada
clemieux@cs.ubc.ca

Abstract

Parametric generators are a simple way to combine coverage-guided
and generator-based fuzzing. Parametric generators can be thought
of as decoders of an arbitrary byte sequence into a structured input.
This allows mutations on the byte sequence to map to mutations
on the structured input, without requiring the writing of special-
ized mutators. However, this technique is prone to the havoc effect,
where small mutations on the byte sequence cause large, destruc-
tive mutations to the structured input. This registered report first
provides a preliminary investigation of the paradoxical nature of
the havoc effect for generator-based fuzzing in Java. In particular,
we measure mutation characteristics and confirm the existence of
the havoc effect, as well as scenarios where it may be more detri-
mental. The proposed evaluation extends this investigation over
more benchmarks, with the tools Zest, JQF’s EI, BeDivFuzz, and
Zeugma.

Caroline Lemieux --- Expanding the Reach of Fuzzing

The Havoc Paradox in Generator-Based Fuzzing (Registered
Report)

Madonna Huang
University of British Columbia
Vancouver, Canada
huicongh@cs.ubc.ca

Rohan Padhye
Carnegie Mellon University
Pittsburgh, USA
rohanpadhye@cmu.edu

type or input-format structure. Parametric generators [3, 11, 21, 23,
29-31, 36] enable mutations to be performed on inputs produced
by such generators. This unlocks the benefits of coverage-guided
grey-box fuzzing [1, 7, 16, 17], which incorporate a feedback loop
to guide input generation.

The key idea behind parametric generators is to treat generator
functions as decoders of an arbitrary sequence of bytes, producing
structurally valid inputs given any pseudo-random input sequence.
Figure 1 depicts examples of such generators in C++ (via libFuzzer’s
FuzzedDataProvider [8]) and in Java (via JQF [30]) for sampling bi-
nary trees; in the latter case, the Random parameter is a facade for an
object that extracts values from a regular InputStream. Fig. 2a de-
picts an example of the decoding process, with bytes color-mapped
to corresponding decisions in the generator functions from Fig. 1.

By providing the byte-sequence decoded by the generator to a
conventional mutation-based fuzzing algorithm, parametric gen-

mvntamn wak abesnberend cmcabatinen e Fonn? Tie 9Lk dlceeen bl o

31

Discussion

First Thoughts/Opinions

* What did you like most/least about the paper?

How Were Benchmarks Chosen?

* Disclaimer: | don't entirely remember
* This was the first “Java fuzzing” work
« XML generator we had early on

* We had some other benchmarks, but Zest was not
outperforming quickcheck on those (“too simple”)

» Koushik told Rohan: “write a javascript generator today and
show me if it works”

Abandoned Benchmarks?

* Generators:
https://github.com/rohanpadhye/JQF/tree/master/examples/src

/main/java/edu/berkeley/cs/jaf/examples

 Fuzz drivers/properties:
https://github.com/rohanpadhye/JQF/tree/master/examples/src

/test/]ava/edu/berkeley/cs/jgf/examples

 Our experience confirms: When a generator covers all the space
of inputs (e.g., graph examples), full coverage is easy to get

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

35

https://github.com/rohanpadhye/JQF/tree/master/examples/src/main/java/edu/berkeley/cs/jqf/examples
https://github.com/rohanpadhye/JQF/tree/master/examples/src/main/java/edu/berkeley/cs/jqf/examples
https://github.com/rohanpadhye/JQF/tree/master/examples/src/test/java/edu/berkeley/cs/jqf/examples
https://github.com/rohanpadhye/JQF/tree/master/examples/src/test/java/edu/berkeley/cs/jqf/examples

How Were Benchmarks Chosen?

* We had some other benchmarks, but Zest was not
outperforming quickcheck on those (“too simple”) @

Once a Benchmark is Established...

RLCheck (us, ICSE'20)

Benchmarks. We compare the techniques on four real-world Java

Zeugma (not us, ICSE'24)

benchmarks used in the original evaluation of Zest [38]: Apache
Ant, Apache Maven, Google Closure Compiler, and Mozilla Rhino.
These benchmarks rely on two generators: Ant and Maven use an
XML generator, whereas Closure and Rhino use a generator for

. 2ach of these four bench-
BeDivFuzz (not us, ICSE'22)

We evaluated ZEuGMA on benchmark suite of seven real-world Java
projects consisting of the five subjects used by Padhye et al. [46] in
their evaluation of ZesT (Ant, BCEL, Closure, Maven, and Rhino)
and the two additional subjects used by Nguyen and Grunske [38]
in theirev;™ =~ "™ 7——7—27 v ™2 We list

these subje MUZ2 (RP’s group, ISSTA23) :of each

g eerietieee —mmyeeeee — — -.—___iOn is conducted on six real-
Max world benchmarks, namely Apache Ant, Apache Maven, Mozilla
gji Rhino, Google Closure Compiler, Oracle Nashorn, and Apache Tom-
cat. The first four subjects have been used in the original evaluations
;é " of Zest [32] and RLCheck [35]; we add two additional subjects for

Confetti (i

We e

a broader benchmark. In addition, we have updated the subjects
to the latest versions available at the time when we conducted the
experiments. Inputs for Ant, Maven, and Tomcat are generated by
an XML generator, whereas Rhino, Closure, and Nashorn use a
JavaScript code generator.

subject avauapie 1
tions were made to
and Nguyen and G
newer subject versic
included with JQF (
classes. We change:
increase the maxin
Kukucka et al. [23]
cise certain functior

Benchmarks. We consider five real-world Java programs:?

(1) ChocoPy [7, 61] reference compiler (~6K LoC): The test driver
(reused from [75]) reads in a program in ChocoPy (a statically
typed dialect of Python) and runs the semantic analysis stage
of the ChocoPy reference compiler to return a type-checked
AST object.

(2) Gson [29] JSON Parser (~26K LoC): The test driver parses a
input JSON string and returns a Java object output.

9/19/2024

metl'ic fl.I.LLCI JAWLUTLCDL [UU] dallul UdC LLLIC dalllT dULLC UL UCLICLar s
programs, given that we built CONFETTI on top of JQF-Zest. Where
possible, we used the latest version of the target software that still
contained the bugs detected by JQF-Zest in the original work. Fol-
lowing best practices, we study both CONFETTI’s ability to explore
program branches (e.g., coverage) in comparison to JQF-Zest, and
its ability to find new and previously-known bugs [50].

enerator itself.
& similar to that of Gson.

(3) Jackson [22] JSON Parser (~49K LoC): The test driver acts

(4) Apache Tomcat [3] WebXML Parser (~10K LoC): The test
driver parses a string input and returns the WebXML repre-

sentation of the parsed output.

(5) Google Closure Compiler [30] (~250K LoC): The test driver
(reused from [59] and [75]) takes in a JavaScript program
and performs source-to-source optimizations. It then returns

the optimized JavaScript code.

Caroline Lemieux --- Expanding the Reach of Fuzzing

37

9/19/2024

Syntactic Bugs

» https.//drive.google.com/file/d/1GCODL1Y4_DagerQOmqg2CbtpT

zOI|jPo97 /view

Caroline Lemieux --- Expanding the Reach of Fuzzing

38

https://drive.google.com/file/d/1GCODL1Y4_DagerQ0mq2CbtpTzOljPo97/view
https://drive.google.com/file/d/1GCODL1Y4_DagerQ0mq2CbtpTzOljPo97/view

A Note on Performance

* When we run QuickCheck
for 3 hours, should we run
it with coverage feedback?

* We did in Zest

* |s this a reasonable
decision? Why/why not?

9/19/2024

%)

% Semantic Branches Cove

% 5

=]
J— e 2 _ R
- @
-
[=]
Zes]
AFL 2
-
QuickCheck u
o2
a
o
=
g1
E
3 QuickCheck
=0
1 25
Time (hrs) Time (hrs)
(a) maven (b) ant
k]
— @
— >
15 ~ 8
@
=
g2
jud
@
u
Zes E1 Zes
AFL 2 AFL
Qui 3 QuickCheck
&
2 2
ime (hrs) ime (hrs)
(c) closure (d) rhino
B —
2201 [
=] |
(8]
21 |
N =
||
s [
e ||
£ i
- |
E |
] |
v
=
0 2
Time (hrs)
(e) beel

Caroline Lemieux --- Expanding the Reach of Fuzzing

Bug ID Exception Tool Mean Time to Find (shorter is better) Reliability

0 (99.45 sec) 100%
[

ant IllegalStateException AFL 1 (6369.5 sec) 10%
QC [1(1208.0 sec) 10%
(8.8 sec) 100%
closure @ NullPointerException AFL [| (5496.25 sec) 20%
(8.8 sec) 100%
[(460.42 sec) 60%
closure @ RuntimeException AFL [: X 0%
oc I 5 X 0% 1 O b .
[
[(534.0 sec) 5% new U g S.
closure @ IllegalStateException AFL [: X 0% t .
I ix o e Zestwins on 6
© | (8.25 sec) 100% .
rhino IllegalStateException AFL [(5343.0 sec) 20% ° QC 1
[(9.65 sec) 100% WINS on
Zest 1(18.6 sec) 100% ° Z QC T I 2
rhino @ NullPointerException AFL [: X 0% e St + Ie S O n
(.85 sec) 100%
0 (245.18 sec) 85%
rhino ® ClassCastException AFL [: X 0%
QC [1(362.43 sec) 35%
0(94.75 sec 100%
()
rhino @ VerifyError AFL [: X 0%
QC 0 (229.5 sec) 80%
Zest [(19.5 sec) 100%
beel @ ClassFormatException [(5.85 sec) 100%
QC (1421 sec) 100%
| (19.32 sec) 95%
beel @ AssertionViolatedException AFL [1(1082.22 sec) 90%
QC [(15.0 sec) 5%

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

RLCheck (ICSE'20)

* Goal was to have a blackbox approach to validity fuzzing
* Pitch was: good to generate as many different valid input as possible

* Ran RLCheck + QuickCheck without coverage feedback for 5
mins, replayed same # of inputs generated

150k 200k 1500k 4
== QuickCheck —:= QuickCheck == QuickCheck == QuickCheck
o 30k Zest . Zest w150k Zest w Zest
=] =] =
= —— RLCheck = 100k{ —— RLCheck = —— RLCheck - = 100k{ — RLCheck
= = il =
> 20k RLCheck* > 2 100k - v
g b i il
T " 4 5ok v ¥ 50k
> - > = 2z
5 10k e = & 50k a
,:-'-"-'_F-‘-H_F-'— ______ —
O] —— e e mm=n = s 0] L e mnmnen=a=n=n = 0 0] ST
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Time (min) Time (min} Time (min) Tirme {min)
(a) Ant (*: at least 1 valid) (b) Maven (c) Rhino (d) Closure

Figure 7: Number of diverse valid inputs (i.e. inputs with different traces) generated by each technique. Higher is better.

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

Bug discovery comp
(RLCheck: 5 min timeout)

Table 1: Average time to discovery (TTD) and Reliability
(Rel.)—the percentage of runs on which the bug was found—

for bugs found by each technique during our experiments.
Bugs are deduplicated by benchmark and exception type.

Dash “-” indicates bug was not found.

RLCheck QuickCheck Zest
Bug ID TTD Rel. TTD Rel. TTD Rel

Ant, (#1) 41s 50% 178s 10% 123s 9%
Closure, (#2) Is 100% 12s 100% 23s 60%

Rhino, (#3) 95s 90% 62s 0% 276s 10%
Rhino, (#4) 11s 100% 1s 100% 30s 100%
Rhino, (#5) - - 3s 100% 80s 100%
Rhino, (#6) - - 96s 20% - -

Bug ID Exception Tool Mean Time to Find (shorter is better) Reliability

0 (99.45 sec) 100%
ant IllegalStateException AFL [1 (6369.5 sec) 10%

QC [1(1208.0 sec) 10%

(8.8 sec) 100%
closure @ NullPointerException AFL [| (5496.25 sec) 20%

(QC) (8.8 sec) 100%

| (8.25 sec) 100%
rhino @ IllegalStateException AFL [| (5343.0 sec) 20%

[(9.65 sec) 100%

Zest [(18.6 sec) 100%
rhino @ NullPointerException AFL [: X 0%

(9.85 sec) 100%

0 (245.18 sec) 85%
rhino ® ClassCastException AFL [: X 0%

QC [(362.43 sec) 35%

0 (94.75 sec) 100%
rhino @ VerifyError AFL [: X 0%

QC 0 (229.5 sec) 80%

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

42

A Note on Performance

* When we run QuickCheck
for 3 hours, should we run
it with coverage feedback?

* We did in Zest

* |s this a reasonable
decision? Why/why not?

9/19/2024

%)

% Semantic Branches Cove

% 5

=]
J— e 2 _ R
- @
-
[=]
Zes]
AFL 2
-
QuickCheck u
o2
a
o
=
g1
E
3 QuickCheck
=0
1 25
Time (hrs) Time (hrs)
(a) maven (b) ant
k]
— @
— >
15 ~ 8
@
=
g2
jud
@
u
Zes E1 Zes
AFL 2 AFL
Qui 3 QuickCheck
&
2 2
ime (hrs) ime (hrs)
(c) closure (d) rhino
B —
2201 [
=] |
(8]
21 |
N =
||
s [
e ||
£ i
- |
E |
] |
v
=
0 2
Time (hrs)
(e) beel

Caroline Lemieux --- Expanding the Reach of Fuzzing

Parametric Generators: Convergent Evolution

* We mention crowbar as also doing this, other papers

* libFuzzer “"FuzzedDataProvider” is like byte-based randor

: : : Peter Goodman, trail of
e First dinner at Shonan in 2019: Bt O, b talkimg about
« What are you presenting about?

a system to control
randomness too!

I'm talking about Zest, |
really like this guiding
generators with

randomness thing

<<INTERNAL (Ned Williamson, google)
PANIC> > That sounds like what I'm

talking about too!

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing

Assorted Q’'s

* J Generator any good?

* Runtime: Why 3 hours?

* Benchmarks: why those?
» Generator quality?

* Where are the roperties?

	Slide 0: Semantic Fuzzing with Zest
	Slide 1: Useless Backstory
	Slide 2: Sometime in 2017
	Slide 3: Later in 2017
	Slide 4: Early (Early) 2018
	Slide 5: Later in 2018
	Slide 6: Later (Later) in 2018
	Slide 7: Again, Confusion about “Parametric Generators”
	Slide 8: ICSE’19 Version
	Slide 9: ISSTA’19 Version
	Slide 10: Now in 2019
	Slide 11: Technique
	Slide 12: Can we get higher-level mutations?
	Slide 13: Generators as Input Structure Specification
	Slide 14: How to Get Mutations?
	Slide 15: Generator: Source of Randomness  Input
	Slide 16: Generator: Source of Randomness  Input
	Slide 17: Generator: Source of Randomness  Input
	Slide 18: Generator: Source of Randomness  Input
	Slide 19: Generator: Source of Randomness  Input
	Slide 20: Generator: Source of Randomness  Input
	Slide 21: Generator: Source of Randomness  Input
	Slide 22: Source of Randomness == Infinite Bit-Sequence
	Slide 23: Bit Mutations  Structured Input Mutations
	Slide 24: Bit Mutations  Structured Input Mutations
	Slide 25: JQF/Zest: Integrate Generator + CGF
	Slide 26: JQF/Zest: Integrate Generator + CGF
	Slide 27: JQF/Zest: Integrate Generator + CGF
	Slide 28: Zest: Add Validity Feedback Based on assume
	Slide 29: What’s valid? assume?
	Slide 30: Use of S in Mutate()
	Slide 31: Are bit mutations smart at all?
	Slide 32: Discussion
	Slide 33: First Thoughts/Opinions
	Slide 34: How Were Benchmarks Chosen?
	Slide 35: Abandoned Benchmarks?
	Slide 36: How Were Benchmarks Chosen?
	Slide 37: Once a Benchmark is Established…
	Slide 38: Syntactic Bugs
	Slide 39: A Note on Performance
	Slide 40
	Slide 41: RLCheck (ICSE’20)
	Slide 42: Bug discovery comp (RLCheck: 5 min timeout)
	Slide 43: A Note on Performance
	Slide 44: Parametric Generators: Convergent Evolution
	Slide 45: Assorted Q’s

