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Useless Backstory
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Sometime in 2017

land of grad students

sea of profs

I have a grant on 
finding performance 

vulnerabilities in Java!

I have students! I built 
concolic executors for 

Java! Let’s 
collaborate!

I know AFL! I’ll build 
the performance-
fuzzing AFL part!

I know Java! I will 
build the Java fuzzing 

part of it.
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Later in 2017

That’s not really 
security…. But ok…

Can I do performance 
fuzzing of C programs 
as my course project?



Early (Early) 2018
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We can submit this 
performance fuzzing 

stuff just for C to 
ISSTA! 

Wow! Distinguished 
paper award! I don’t 

need even to help you 
guys write papers 

anymore!



Later in 2018
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So…. What about the 
Java thing?



Later (Later) in 2018
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(2? days before deadline) We 
need a better name. Caroline, 
go home, take a nap, come up 

with a name

OK
…

Zest!



Again, Confusion about “Parametric 
Generators”
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Ben, can you read this 
section on parametric 

generators? And tell me 
how confusing it is on a 

scale of 1-10

Ok.

It is 7/10 
confusing



ICSE’19 Version
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ISSTA’19 Version
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Now in 2019
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Technique
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Input
mutate execute

9/19/2024

Input
Input

Input
Inputn’

Can we get higher-level mutations?

Execution 

Feedback
Execution 

Feedback
Execution 

Feedback
Execution 

Feedbackn

Input2’
Inputn’

Interesting Feedback?

pickInitial
Input

Input
Input

Input

save

with more information about input structure?



Generators as Input Structure Specification
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Input Generator Input
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How to Get Mutations?

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node
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Generator: Source of Randomness → Input

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

S
T
R
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Generator: Source of Randomness → Input

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

foo

<foo> 

  
</foo>

S
T
R
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Generator: Source of Randomness → Input

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

foo

<foo> 

  
</foo>

S
T
R
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Generator: Source of Randomness → Input

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

foo

<foo> 

  
</foo>

S
T
R
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Generator: Source of Randomness → Input

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

foo

bar

<foo> 
  <bar/> 
  
</foo>

S
T
R
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Generator: Source of Randomness → Input

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

foo

bar baz

Text{”xyz”}

<foo> 
  <bar/> 
  <baz>“xyz”</baz> 
</foo>

S
T
R
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Generator: Source of Randomness → Input

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

foo

bar baz

Text{”xyz”}

<foo> 
  <bar/> 
  <baz>“xyz”</baz> 
</foo>

S
T
R
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Source of Randomness == Infinite Bit-Sequence

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

0000 0011 0110 0110 0110 1111 0110 1111 0000 0010 ...pseudo-random bits:

foo

bar baz

Text{”xyz”}

<foo> 
  <bar/> 
  <baz>“xyz”</baz> 
</foo>

S
T
R
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Bit Mutations → Structured Input Mutations

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

0000 0011 0110 0110 0110 1111 0110 1111 0000 0010 ...pseudo-random bits:

foo

bar baz

Text{”xyz”}

<foo> 
  <bar/> 
  <baz>“xyz”</baz> 
</foo>

S
T
R



24Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Bit Mutations → Structured Input Mutations

def genXML(random):

    tag = random.choice(tags)

    node = XMLElement(tag)

    num_child = random.nextInt(0, MAX_CHILDREN)

    for i in range(0, num_child):

        node.addChild(genXML(random)) 

    if random.nextBoolean():

        node.addText(random.nextString())

    return node

0000 0011 0101 0111 0110 1111 0110 1111 0000 0010 ...pseudo-random bits:

woo

bar baz

Text{”xyz”}

<woo> 
  <bar/> 
  <baz>“xyz”</baz> 
</woo>

S
T
R
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Input
mutate execute

9/19/2024

Input
Input

Input
Inputn’

JQF/Zest: Integrate Generator + CGF

Execution 

Feedback
Execution 

Feedback
Execution 

Feedback
Execution 

Feedbackn

Input2’
Inputn’

Interesting Feedback?

pickInitial
Input

Input
Input

Input

seeds

save

GeneratorParams
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Params
mutate

execute

input

9/19/2024

Input
Input

Input
Paramsn’

JQF/Zest: Integrate Generator + CGF

Execution 

Feedback
Execution 

Feedback
Execution 

Feedback
Execution 

Feedbackn

Input2’
Paramsn’

pickInitial
Input

Input
Input
Params

seeds

save

Generator

Interesting Feedback?



Higher-level mutations via generator  
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Params
mutate

execute

input

9/19/2024

Input
Input

Input
Paramsn’

JQF/Zest: Integrate Generator + CGF

Execution 

Feedback
Execution 

Feedback
Execution 

Feedback
Execution 

Feedbackn

Input2’
Paramsn’

pickInitial
Input

Input
Input
Params

seeds

save

Generator

Interesting Feedback?



“Validity Feedback”

Higher-level mutations via generator  
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Params
mutate

execute

input

9/19/2024

Input
Input

Input
Paramsn’

Zest: Add Validity Feedback Based on 
assume

Execution 

Feedback
Execution 

Feedback
Execution 

Feedback
Execution 

Feedbackn

Input2’
Paramsn’

pickInitial
Input

Input
Input
Params

seeds

save

Generator

Save if new coverage

+ 

Save if new coverage 

for a valid input



What’s valid? assume?

P in P(x) => Q(x)
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P(xml):

readModel(xml.ToString()) != null

Q(xml):

runModel(readModel(xml.ToString)) == success



Use of S in Mutate()
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Are bit mutations smart at all?

• No.

• We had a ”smarter” mutation strategy which was going to be a 
big part of the technical contributions of the paper

• But it was no better than the baseline technique
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Discussion
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First Thoughts/Opinions

• What did you like most/least about the paper?
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How Were Benchmarks Chosen?

• Disclaimer: I don’t entirely remember

• This was the first “Java fuzzing” work

• XML generator we had early on

• We had some other benchmarks, but Zest was not 
outperforming quickcheck on those (“too simple”)

• Koushik told Rohan: “write a javascript generator today and 
show me if it works”
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Abandoned Benchmarks?

• Generators: 
https://github.com/rohanpadhye/JQF/tree/master/examples/src
/main/java/edu/berkeley/cs/jqf/examples

• Fuzz drivers/properties: 
https://github.com/rohanpadhye/JQF/tree/master/examples/src
/test/java/edu/berkeley/cs/jqf/examples

• Our experience confirms: When a generator covers all the space 
of inputs (e.g., graph examples), full coverage is easy to get
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https://github.com/rohanpadhye/JQF/tree/master/examples/src/main/java/edu/berkeley/cs/jqf/examples
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How Were Benchmarks Chosen?

• Disclaimer: I don’t entirely remember

• This was the first “Java fuzzing” work

• XML generator we had early on

• We had some other benchmarks, but Zest was not 
outperforming quickcheck on those (“too simple”)

• Koushik told Rohan: “write a javascript generator today and 
show me if it works”
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Once a Benchmark is Established…
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RLCheck (us, ICSE’20)

Confetti (not us, ICSE’22)

Zeugma (not us, ICSE’24)

BeDivFuzz (not us, ICSE’22)
Mu2 (RP’s group, ISSTA’23)



Syntactic Bugs

• https://drive.google.com/file/d/1GCODL1Y4_DagerQ0mq2CbtpT
zOljPo97/view
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https://drive.google.com/file/d/1GCODL1Y4_DagerQ0mq2CbtpTzOljPo97/view
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A Note on Performance

• When we run QuickCheck 
for 3 hours, should we run 
it with coverage feedback?

• We did in Zest

• Is this a reasonable 
decision? Why/why not?
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• 10 new bugs: 
• Zest wins on 6

• QC wins on 1

• Zest + QC Ties on 2



RLCheck (ICSE’20)

• Goal was to have a blackbox approach to validity fuzzing
• Pitch was: good to generate as many different valid input as possible

• Ran RLCheck + QuickCheck without coverage feedback for 5 
mins, replayed same # of inputs generated
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Bug discovery comp 
(RLCheck: 5 min timeout)
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A Note on Performance

• When we run QuickCheck 
for 3 hours, should we run 
it with coverage feedback?

• We did in Zest

• Is this a reasonable 
decision? Why/why not?
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Parametric Generators: Convergent Evolution

• We mention crowbar as also doing this, other papers

• libFuzzer “FuzzedDataProvider” is like byte-based random 

• First dinner at Shonan in 2019:
• What are you presenting about?
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I’m talking about Zest, I 

really like this guiding 

generators with 

randomness thing

(Peter Goodman, trail of 
bits) Oh, I’m talking about 

a system to control 

randomness too!

(Ned Williamson, google)
That sounds like what I’m 

talking about too!

<<INTERNAL 

PANIC>>



Assorted Q’s

• J Generator any good?

• Runtime: Why 3 hours?

• Benchmarks: why those?

• Generator quality?

• Where are the roperties?
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