
Semantic Fuzzing with Zest

Caroline Lemieux
University of California,

Berkeley

Rohan Padhye
University of California,

Berkeley

Koushik Sen
University of California,

Berkeley

Mike Papadakis
University of
Luxembourg

Yves Le Traon
University of
Luxembourg

Useless Backstory

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 1

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 2

Sometime in 2017

land of grad students

sea of profs

I have a grant on
finding performance

vulnerabilities in Java!

I have students! I built
concolic executors for

Java! Let’s
collaborate!

I know AFL! I’ll build
the performance-
fuzzing AFL part!

I know Java! I will
build the Java fuzzing

part of it.

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 3

Later in 2017

That’s not really
security…. But ok…

Can I do performance
fuzzing of C programs
as my course project?

Early (Early) 2018

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 4

We can submit this
performance fuzzing

stuff just for C to
ISSTA!

Wow! Distinguished
paper award! I don’t

need even to help you
guys write papers

anymore!

Later in 2018

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 5

So…. What about the
Java thing?

Later (Later) in 2018

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 6

(2? days before deadline) We
need a better name. Caroline,
go home, take a nap, come up

with a name

OK
…

Zest!

Again, Confusion about “Parametric
Generators”

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 7

Ben, can you read this
section on parametric

generators? And tell me
how confusing it is on a

scale of 1-10

Ok.

It is 7/10
confusing

ICSE’19 Version

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 8

ISSTA’19 Version

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 9

Now in 2019

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 10

Technique

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 11

12Caroline Lemieux --- Expanding the Reach of Fuzzing

Input
mutate execute

9/19/2024

Input
Input

Input
Inputn’

Can we get higher-level mutations?

Execution

Feedback
Execution

Feedback
Execution

Feedback
Execution

Feedbackn

Input2’
Inputn’

Interesting Feedback?

pickInitial
Input

Input
Input

Input

save

with more information about input structure?

Generators as Input Structure Specification

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 13

Input Generator Input

14Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

How to Get Mutations?

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

15Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Generator: Source of Randomness → Input

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

S
T
R

16Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Generator: Source of Randomness → Input

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

foo

<foo>

</foo>

S
T
R

17Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Generator: Source of Randomness → Input

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

foo

<foo>

</foo>

S
T
R

18Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Generator: Source of Randomness → Input

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

foo

<foo>

</foo>

S
T
R

19Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Generator: Source of Randomness → Input

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

foo

bar

<foo>
 <bar/>

</foo>

S
T
R

20Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Generator: Source of Randomness → Input

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

foo

bar baz

Text{”xyz”}

<foo>
 <bar/>
 <baz>“xyz”</baz>
</foo>

S
T
R

21Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Generator: Source of Randomness → Input

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

foo

bar baz

Text{”xyz”}

<foo>
 <bar/>
 <baz>“xyz”</baz>
</foo>

S
T
R

22Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Source of Randomness == Infinite Bit-Sequence

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random)

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

0000 0011 0110 0110 0110 1111 0110 1111 0000 0010 ...pseudo-random bits:

foo

bar baz

Text{”xyz”}

<foo>
 <bar/>
 <baz>“xyz”</baz>
</foo>

S
T
R

23Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Bit Mutations → Structured Input Mutations

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random)

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

0000 0011 0110 0110 0110 1111 0110 1111 0000 0010 ...pseudo-random bits:

foo

bar baz

Text{”xyz”}

<foo>
 <bar/>
 <baz>“xyz”</baz>
</foo>

S
T
R

24Caroline Lemieux --- Expanding the Reach of Fuzzing9/19/2024

Bit Mutations → Structured Input Mutations

def genXML(random):

 tag = random.choice(tags)

 node = XMLElement(tag)

 num_child = random.nextInt(0, MAX_CHILDREN)

 for i in range(0, num_child):

 node.addChild(genXML(random))

 if random.nextBoolean():

 node.addText(random.nextString())

 return node

0000 0011 0101 0111 0110 1111 0110 1111 0000 0010 ...pseudo-random bits:

woo

bar baz

Text{”xyz”}

<woo>
 <bar/>
 <baz>“xyz”</baz>
</woo>

S
T
R

25Caroline Lemieux --- Expanding the Reach of Fuzzing

Input
mutate execute

9/19/2024

Input
Input

Input
Inputn’

JQF/Zest: Integrate Generator + CGF

Execution

Feedback
Execution

Feedback
Execution

Feedback
Execution

Feedbackn

Input2’
Inputn’

Interesting Feedback?

pickInitial
Input

Input
Input

Input

seeds

save

GeneratorParams

26Caroline Lemieux --- Expanding the Reach of Fuzzing

Params
mutate

execute

input

9/19/2024

Input
Input

Input
Paramsn’

JQF/Zest: Integrate Generator + CGF

Execution

Feedback
Execution

Feedback
Execution

Feedback
Execution

Feedbackn

Input2’
Paramsn’

pickInitial
Input

Input
Input
Params

seeds

save

Generator

Interesting Feedback?

Higher-level mutations via generator

27Caroline Lemieux --- Expanding the Reach of Fuzzing

Params
mutate

execute

input

9/19/2024

Input
Input

Input
Paramsn’

JQF/Zest: Integrate Generator + CGF

Execution

Feedback
Execution

Feedback
Execution

Feedback
Execution

Feedbackn

Input2’
Paramsn’

pickInitial
Input

Input
Input
Params

seeds

save

Generator

Interesting Feedback?

“Validity Feedback”

Higher-level mutations via generator

28Caroline Lemieux --- Expanding the Reach of Fuzzing

Params
mutate

execute

input

9/19/2024

Input
Input

Input
Paramsn’

Zest: Add Validity Feedback Based on
assume

Execution

Feedback
Execution

Feedback
Execution

Feedback
Execution

Feedbackn

Input2’
Paramsn’

pickInitial
Input

Input
Input
Params

seeds

save

Generator

Save if new coverage

+

Save if new coverage

for a valid input

What’s valid? assume?

P in P(x) => Q(x)

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 29

P(xml):

readModel(xml.ToString()) != null

Q(xml):

runModel(readModel(xml.ToString)) == success

Use of S in Mutate()

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 30

Are bit mutations smart at all?

• No.

• We had a ”smarter” mutation strategy which was going to be a
big part of the technical contributions of the paper

• But it was no better than the baseline technique

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 31

Discussion

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 32

First Thoughts/Opinions

• What did you like most/least about the paper?

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 33

How Were Benchmarks Chosen?

• Disclaimer: I don’t entirely remember

• This was the first “Java fuzzing” work

• XML generator we had early on

• We had some other benchmarks, but Zest was not
outperforming quickcheck on those (“too simple”)

• Koushik told Rohan: “write a javascript generator today and
show me if it works”

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 34

Abandoned Benchmarks?

• Generators:
https://github.com/rohanpadhye/JQF/tree/master/examples/src
/main/java/edu/berkeley/cs/jqf/examples

• Fuzz drivers/properties:
https://github.com/rohanpadhye/JQF/tree/master/examples/src
/test/java/edu/berkeley/cs/jqf/examples

• Our experience confirms: When a generator covers all the space
of inputs (e.g., graph examples), full coverage is easy to get

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 35

https://github.com/rohanpadhye/JQF/tree/master/examples/src/main/java/edu/berkeley/cs/jqf/examples
https://github.com/rohanpadhye/JQF/tree/master/examples/src/main/java/edu/berkeley/cs/jqf/examples
https://github.com/rohanpadhye/JQF/tree/master/examples/src/test/java/edu/berkeley/cs/jqf/examples
https://github.com/rohanpadhye/JQF/tree/master/examples/src/test/java/edu/berkeley/cs/jqf/examples

How Were Benchmarks Chosen?

• Disclaimer: I don’t entirely remember

• This was the first “Java fuzzing” work

• XML generator we had early on

• We had some other benchmarks, but Zest was not
outperforming quickcheck on those (“too simple”)

• Koushik told Rohan: “write a javascript generator today and
show me if it works”

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 36

Once a Benchmark is Established…

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 37

RLCheck (us, ICSE’20)

Confetti (not us, ICSE’22)

Zeugma (not us, ICSE’24)

BeDivFuzz (not us, ICSE’22)
Mu2 (RP’s group, ISSTA’23)

Syntactic Bugs

• https://drive.google.com/file/d/1GCODL1Y4_DagerQ0mq2CbtpT
zOljPo97/view

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 38

https://drive.google.com/file/d/1GCODL1Y4_DagerQ0mq2CbtpTzOljPo97/view
https://drive.google.com/file/d/1GCODL1Y4_DagerQ0mq2CbtpTzOljPo97/view

A Note on Performance

• When we run QuickCheck
for 3 hours, should we run
it with coverage feedback?

• We did in Zest

• Is this a reasonable
decision? Why/why not?

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 39

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 40

• 10 new bugs:
• Zest wins on 6

• QC wins on 1

• Zest + QC Ties on 2

RLCheck (ICSE’20)

• Goal was to have a blackbox approach to validity fuzzing
• Pitch was: good to generate as many different valid input as possible

• Ran RLCheck + QuickCheck without coverage feedback for 5
mins, replayed same # of inputs generated

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 41

Bug discovery comp
(RLCheck: 5 min timeout)

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 42

A Note on Performance

• When we run QuickCheck
for 3 hours, should we run
it with coverage feedback?

• We did in Zest

• Is this a reasonable
decision? Why/why not?

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 43

Parametric Generators: Convergent Evolution

• We mention crowbar as also doing this, other papers

• libFuzzer “FuzzedDataProvider” is like byte-based random

• First dinner at Shonan in 2019:
• What are you presenting about?

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 44

I’m talking about Zest, I

really like this guiding

generators with

randomness thing

(Peter Goodman, trail of
bits) Oh, I’m talking about

a system to control

randomness too!

(Ned Williamson, google)
That sounds like what I’m

talking about too!

<<INTERNAL

PANIC>>

Assorted Q’s

• J Generator any good?

• Runtime: Why 3 hours?

• Benchmarks: why those?

• Generator quality?

• Where are the roperties?

9/19/2024 Caroline Lemieux --- Expanding the Reach of Fuzzing 45

	Slide 0: Semantic Fuzzing with Zest
	Slide 1: Useless Backstory
	Slide 2: Sometime in 2017
	Slide 3: Later in 2017
	Slide 4: Early (Early) 2018
	Slide 5: Later in 2018
	Slide 6: Later (Later) in 2018
	Slide 7: Again, Confusion about “Parametric Generators”
	Slide 8: ICSE’19 Version
	Slide 9: ISSTA’19 Version
	Slide 10: Now in 2019
	Slide 11: Technique
	Slide 12: Can we get higher-level mutations?
	Slide 13: Generators as Input Structure Specification
	Slide 14: How to Get Mutations?
	Slide 15: Generator: Source of Randomness  Input
	Slide 16: Generator: Source of Randomness  Input
	Slide 17: Generator: Source of Randomness  Input
	Slide 18: Generator: Source of Randomness  Input
	Slide 19: Generator: Source of Randomness  Input
	Slide 20: Generator: Source of Randomness  Input
	Slide 21: Generator: Source of Randomness  Input
	Slide 22: Source of Randomness == Infinite Bit-Sequence
	Slide 23: Bit Mutations  Structured Input Mutations
	Slide 24: Bit Mutations  Structured Input Mutations
	Slide 25: JQF/Zest: Integrate Generator + CGF
	Slide 26: JQF/Zest: Integrate Generator + CGF
	Slide 27: JQF/Zest: Integrate Generator + CGF
	Slide 28: Zest: Add Validity Feedback Based on assume
	Slide 29: What’s valid? assume?
	Slide 30: Use of S in Mutate()
	Slide 31: Are bit mutations smart at all?
	Slide 32: Discussion
	Slide 33: First Thoughts/Opinions
	Slide 34: How Were Benchmarks Chosen?
	Slide 35: Abandoned Benchmarks?
	Slide 36: How Were Benchmarks Chosen?
	Slide 37: Once a Benchmark is Established…
	Slide 38: Syntactic Bugs
	Slide 39: A Note on Performance
	Slide 40
	Slide 41: RLCheck (ICSE’20)
	Slide 42: Bug discovery comp (RLCheck: 5 min timeout)
	Slide 43: A Note on Performance
	Slide 44: Parametric Generators: Convergent Evolution
	Slide 45: Assorted Q’s

