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Chapter 1

Introduction

Software bugs remain pervasive in modern software systems. As software becomes increasingly
intertwined in all aspects of our lives, the consequences of these bugs become increasingly
severe. For instance, in the last few years, several important security vulnerabilities have
emerged from basic correctness bugs in software [101, 155, 89].

Though not all bugs cause important security vulnerabilities, their overall cost remains
high: one estimate puts the cost of dealing with software failures and defects in the United
States alone in 2018 at nearly USD$1,540,000,000 [108].

This dissertation explores methods to help developers improve the quality of software
before bugs ship into productions and incur these costs. The particular focus is on fuzz testing
or fuzzing tools. These tools automatically find bug-inducing inputs in programs; inputs x
that, when run on a program p, cause the program to crash.

Access to such tools greatly helps reduce the time to find and fix bugs, and thus, reduces
the impact of these bugs. As a concrete example, consider a case study of the OpenSSL
library [73]. In 2012, a bug was introduced into the library which allowed an attacker to read
memory from a server that did not belong to them [144]. This bug, later named Heartbleed,
was only discovered in 2014. By that time, it had spread widely, and was exploited to great
cost. For instance, it enabled the leak of millions of patient records from the U.S.’s second
largest hospital chain [76]. It also forced the Canada Revenue Agency website to shut down
for several days [116], but not before over 900 Social Insurance Numbers were leaked from
the agency’s website [143].

By contrast, nearly 4 years later, another bug was introduced into OpenSSL. This bug
could have allowed an attacker to execute arbitrary code, and was judged as much more
severe than Heartbleed [145]. However, there are no widely publicized costs associated with
this bug, CVE-2016-6309. This may be in large part because it was discovered one day after
its introduction by a modern fuzz testing tool, honggfuzz [174].

The term fuzz testing dates back to Miller et al.’s seminal work from 1990 [135], but has
re-emerged as an area of interest following the appearance of the pioneering AFL [185] around
2014. Fuzz testing tools assume the following program setting. There is a program p which
runs on some input x. For the purposes of this dissertation, differences in the behavior of p
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on different executions should be entirely explained by differences in the input x. That is, the
program should be deterministic, single-threaded, and relatively fast-running. In the classical
fuzzing domain, the input x is typically a file—modelled as a sequence of bytes—processed
by the program p, but it can also be a more general data structure.

Fuzzing tools then repeatedly run the program p on inputs x that are generated via a
variety of random search procedures, until an input x∗ is found which induces a bug in p.
Typically, these tools identify the presence of a bug via universal correctness oracles — if
the program crashes or exits earlier due to an assertion error. The pure random fuzzing
introduced by Miller et al. [135] simply created the inputs x by sampling random sequences
of bytes, but modern fuzzing algorithms are much more sophisticated in their input creation
methodology. Many modern fuzzing algorithms rely on detailed program feedback to guide
the generation of inputs (Chapters 3, 4, 5, 6) or rely on user-provided information about
input structure to make the search more targeted (Chapters 6, 7, 8).

Overall, this dissertation presents several methods to make fuzz testing tools more widely
applicable and easy-to-use. This dissertation is divided into three main parts, each of which
identifies a different key component of modern fuzzing algorithms, and how to generalize
this component for different fuzzing goals: new bug domains, deeper program exploration,
and applications beyond testing. Chapter 2 provides a discussion of related work, including
detailed background of a particular coverage-guided fuzzing algorithm, AFL. The rest of this
introduction describes the two modern fuzzing algorithms studied in this dissertation, and
the key drawbacks addressed in each subsequent part of the dissertation.

1.1 Coverage-Guided Fuzzing
In the mid-2010s, coverage-guided fuzzing (CGF) emerged as one of the most effective tech-
niques for fuzzing real-world software. Pioneered by AFL [185], CGF has been implemented
in several other popular tools including libFuzzer [167] and honggfuzz [174].

Like random fuzzing [135, 133]—which sends many random inputs to the program under
test—CGF works by executing a test program with a large number of inputs generated via
random search. However, instead of generating totally random inputs from scratch, CGF
mutates inputs from a set of saved inputs to derive new inputs. Algorithm 1 walks through
the high-level algorithm shared by most implementations of CGF.

The CGF algorithm takes an input an instrumented program (p) and a set of user-provided
seed inputs (S0). Again, typically this program accepts as input a byte-sequence (either via a
file or standard input), and thus, each input in S0 is modelled as a sequence of bytes.

CGF maintains two global states: (1) S, a set of saved inputs to be mutated by the
algorithm, and (2) totalCoverage,which tracks the cumulative coverage of the program on
the inputs in S. The instrumented test program p returns the coverage achieved by the
input it is executed on. The forms of coverage most commonly used by CGF are branch
coverage, basic block coverage, or basic block transition coverage. S is initialized to the set of
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Algorithm 1 The generic coverage-guided fuzzing algorithm.
Input: an instrumented test program p, a set of initial seed inputs S0

Output: a corpus of automatically generated inputs S
1: S ← S0

2: totalCoverage ← initCoverage(S0)
3: repeat . Main fuzzing loop
4: for input in S do
5: with probability fuzzProb(input) do
6: for 1 ≤ i ≤ numChildren(input) do
7: input ′ ← mutate(input) . Generate new test input input′
8: coverage ← execute(p, input ′) . Run test with input′
9: if coverage 6⊆ totalCoverage then
10: S ← S ∪ {input ′} . Save input ′ if it covers new code
11: totalCoverage ← totalCoverage ∪ coverage

12: until given time budget expires
13: return S

user-provided seed inputs (Line 1) and totalCoverage is initialized to the coverage achieved
by those user-provided seed inputs (Line 2).

The main coverage-guided fuzzing loop goes over each input input in the set of inputs
S. With some probability determined by an implementation-specific heuristic function
fuzzProb, CGF decides whether to mutate the input input or not (Line 5). If input is
selected for mutation, CGF decides on how many mutant inputs to generate from input via
another heuristic function numChildren (Line 6).

Then, numChildren(input) times, CGF randomly mutates input to generate a mutant
input′. A random mutation typically involve choosing a random set of bytes in the inputs
and performing a mutation operation there, like: bit flipping, byte flipping, incrementing and
decrementing integer values, or replacing bytes with “interesting” integer values (0, MAX_INT).
CGF executes the program with the newly generated input and collects the coverage of the
input in the temporary variable coverage (Line 8). If the observed coverage contains some
previously-unseen coverage points (Line 9), the new input input ′ is saved to the set of inputs
S (Line 10). This input′ can now be mutated during a future iteration of the fuzzing loop.
The process repeats until the time budget expires.

1.1.1 Drawback: Fixed Testing Goal

Coverage-guided fuzzing tools were conceived as catch-all security auditing tools, to automat-
ically find input-dependent crashes in the program under test. For this broad testing goal,
where the location of a bug is unknown, increased coverage is a reasonable testing signal
under which to save inputs. The logic is that this encourages broad exploration of paths
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through the program, and that exercising all paths in a program should reveal any bugs in
the program.

However, not all bugs are uniformly distributed throughout the program under test, and
furthermore, certain bugs are not revealed by branch coverage alone. For instance, a security
auditor may know that bugs in a particular program component are likely to be more severe,
and want to direct input generation to exercise that component. Or, if an input causes a
negative data value to flow into the argument of a memory allocation, the program under
test may use an unreasonable amount of memory, even if the coverage of the program under
test is not abnormal for that input.

Unfortunately, the notion of interesting inputs being those that increase branch coverage is
generally quite tightly integrated into coverage-guided fuzzing tools, and so, these testing goals
cannot be achieved. Chapters 3 and 4 address this drawback directly. Chapter 3 introduces a
multi-objective feedback-directed fuzzing algorithm and shows that this algorithm can be
used to effectively find inputs with pathological performance behavior. Chapter 4 further
generalizes this feedback-directed fuzzing algorithm, and introduces a framework that allows
for easier customization of the testing goal.

1.1.2 Drawback: Malformed Inputs

Part of the success of random testing methods, including random fuzzing, comes from the
fact that these methods produce inputs outside of the input space the software developer
has reasoned about. As such, random testing quickly reveals the program’s behavior in
exceptional—and often buggy—circumstances.

Coverage-guided fuzzing builds on this intuition as well, with a twist. By generating
inputs via small mutations to existing inputs, it can better ensure that the inputs still get to
some interesting program state (by relying on reasonable inputs to start with), while still
exploring corner cases (revealed via the small mutations of the input). This means that the
inputs generated by CGF find deeper corner cases in input validation than an approach that
relies on purely random sequences of characters as input.

However, the byte-level mutations applied by CGF are still likely to generate inputs that
are, overall, malformed. This is great to stress test parsers, but means that it is very difficult
for coverage-guided fuzzing to consistently generate inputs that pass the validation checks of
a program and explore its core logic. Chapters 5 and 6 address this drawback. In particular,
Chapter 5 describes a mutation masking approach that enables CGF to explore the program
under test more deeply without any additional input from the user. Chapter 6 presents an
approach that can explore the core logic of programs even better, but relies on a user-written
generator to perform high-level mutations during coverage-guided fuzzing.
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1 # Generate a (possibly negated) integer as a string
2 def generate_unexpr ():
3 val = str(random.integer ())
4 if random.boolean ():
5 val += "-" + val
6 return val
7

8 # Generate a binary expression
9 def generate_binexpr ():

10 lhs = generate_expr ()
11 op = random.choice (["-", "+", "/", "*"])
12 rhs = generate_expr ()
13 return lhs + op + rhs
14

15 # Generate a (possibly parenthesized) expression
16 def generate_expr ():
17 if random.boolean ():
18 expr = generate_binexpr ()
19 else:
20 expr = generate_unexpr ()
21 if random.boolean ():
22 expr = "(" + expr + ")"
23 return expr

Figure 1.1: Generator of expressions in a simple calculator language.

1.2 Generator-Based Fuzzing
Coverage-guided fuzzing relies heavily on feedback from the programs’s execution in its input
generation strategy because it has so little information about the structure of inputs to
the program under test. When information about input structure is available, the input
generation strategy can be made much more effective.

This is the key of the effectiveness of generator-based fuzzing (also called property-based
testing [58]). The core idea is to create new inputs by repeatedly calling a (typically, user-
written) generator. This generator is a non-deterministic function, which, each time it is
called, returns a random input in a given search space. An example generator is given in
Figure 1.1: each time generate_expr is called, it returns an input in a simple calculator
language, e.g. “14”, “(3) + 119”, or “(87+1230-(467/234*2))”.

Given a generator like that in Figure 1.1, the fuzzing process is quite straightforward.
Given a program p, repeatedly call the generator to generate an input x. As in coverage-guided
fuzzing, run p on x to observe whether x induces a bug (i.e., a crash or assertion failure).
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While the generator in Figure 1.1 still generates byte-sequence inputs, one can easily
write similar generators for data structures. The term property-based testing, introduced by
QuickCheck for Haskell [58], is used to refer to generator-based fuzzing in a more unit testing
context. There, the program p(x) takes in inputs of a type X and should encode a property
P (x)⇒ Q(x) to be tested. For some types X , a generator can be derived automatically from
the type definition. By generating many inputs x ∈ X and running them through p, the
developer can approximately check that the property ∀x, P (x)⇒ Q(x) holds.

1.2.1 Drawback: Coupling of Distribution and Search Space

The key drawback of generator-based fuzzing emerges when the domain of the generator does
not closely match the space of “interesting” inputs for the program under test. In particular,
if the program encodes a property P (x) ⇒ Q(x), and very few inputs x generated by the
generator satisfy P (x), then most of the runs of the program under test are simply validating
the case in which the property is vacuously true.

For example, for the generator of expression in Figure 1.1, suppose the developer wants
to validate that in the presence of a division by zero, an exception is thrown before the
evaluation of a division by zero. So P (x) is true for inputs x which contain a division by zero.
But many of the inputs sampled from the generator in Figure 1.1 will not include division by
zero. The developer could spend some time tuning the generator in Figure 1.1 to increase
the probability of generating inputs with a division by zero, for example, by forcing more
generation of division expressions with the denominator as the integer literal 0.

Requiring the developer to conduct this tuning comes with its own set of challenges.
First, of course, tuning a generator so that most of the inputs x it generates satisfies P (x)
is a significantly more complex task than writing a simple generator of inputs. Second, as
a human tries to tune the generator to a smaller input space, they may prune the space
of inputs generated unnecessarily. There are many ways to write an expression that has a
division by zero, e.g. “4/(6-3*2)”. If the developer did the simple “add more divisions by 0”
tuning described above, they may prevent the generation of such expressions. The problem
gets worse as the input space becomes more complex, e.g. inputs in a programming language.

The core problem here is that a generator is a specification of a search space (the domain of
inputs x which can be generated by some path through the generator) paired with a probability
distribution over that search space (the probability of any particular path being taken through
the generator). If we could simply adjust the probability distribution from which inputs
are drawn, we could automatically adapt a generic generator to a particular P (x) without
requiring the user to think about distributions. Chapter 6 discusses a method to increase the
number of valid inputs generated by indirectly adjusting these probability distributions via
coverage-guided fuzzing. Chapter 7 presents a reinforcement learning approach to tune these
distributions more directly. Finally, Chapter 8 shows how this same abstraction—splitting
the generator of elements from the distribution from which those elements are drawn—can
be used for program synthesis.
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Chapter 2

Background and Related Work

In this section, we first provide additional background on AFL [185], and then discuss the
numerous fuzz testing and input-generation tools related to the work in this dissertation.

The discussion of related work focuses on those which are the most pertinent to this
work in this dissertation. Some survey papers provide additional context. Valentin et
al. present a unified model of fuzzing—blackbox, greybox and whitebox—, as well as a
genealogy of significant fuzzers up to 2019 [127]. The model of coverage-guided fuzzing in
this dissertation is less overarching, but instead focuses on the core components that must be
altered for different testing goals. Godefroid’s 2020 review overview the field at a higher-level,
highlighting the differences between different branches of fuzzing, rather than unifying them
in a single model [79]. Klees et al. discuss some of the common issues in evaluating different
fuzzers, and how to build more consistent baselines [106].

2.1 American Fuzzy Lop (AFL)
American Fuzzy Lop, or AFL [185], was the first tool to introduce the coverage-guided fuzzing
algorithm, which we discussed previously.

A number of the algorithms presented in this dissertation (Chapters 3, 4, 5) are imple-
mented directly on top of AFL. For context of the implementation details of these algorithms,
we detail the way in which AFL implements the abstract coverage-guided fuzzing algorithm
introduced in Algorithm 1. The main implementation-specific points are: (1) how coverage
is gathered, (2) how inputs are selected for mutation (fuzzProb in Line 5), (3) how many
mutants are produced (Line 6), and (4) how mutations are performed (Line 7).

AFL Coverage Calculation The notion of coverage collected by AFL (coverage in Line 8
of Algorithm 1) while the program under test executes, and its use in the fuzzing loop, is one
of AFL’s key innovations.

In order to collect coverage information efficiently, AFL inserts instrumentation into the
program under test. To track coverage, it first associates each basic block with a random
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number via compile-time instrumentation. The random number is treated as the unique
ID of the basic block. The basic block IDs are then used to generate unique IDs for the
transitions between pairs of basic blocks. In particular, for a transition from basic block A to
B, AFL uses the IDs of each basic block—ID(A) and ID(B), respectively—to define the ID
of the transition, ID(A→ B), as follows:

ID(A→ B)
def
= (ID(A)� 1)⊕ ID(B).

Where ⊕ designates bitwise exclusive or (xor). Right-shifting (�) the basic block ID of the
transition start block (A) ensures that the transition from A to B has a different ID from
the transition from B to A. In this dissertation, in particular in Chapter 5, we associate the
notion of basic block transition with that of a branch in the program, unless stated otherwise.

The coverage of the program under test on a given input is collected as a set of pairs
of the form (branch ID, branch hits). If a (branch ID, branch hits) pair is present in the
coverage set, it denotes that during the execution of the program on the input, the branch
with ID branch ID was exercised branch hits number of times. The branch hits are simplified
into one of 8 buckets: hit 1 time, 2 times, 3 times, 4–7 times, 8–15 times, 16–31 times, 32–127
times, or 128–255 times. AFL calls this set of pairs the “path” of an input. AFL says that an
input achieves new coverage if it discovers a new (branch ID, branch hits) pair.

Choosing which input to mutate. In Line 5 of Algorithm 1, an input is selected from
the set of saved inputs for mutation with a probability fuzzProb. To compute this, AFL
first determines a set of favored inputs. AFL assigns a fuzzProb of 100% to favored inputs
that have not yet been mutated, and 1% to non-favored or already-mutated inputs. If the
set of favored inputs is empty, it relaxes this a little, assigning 25% chance of mutating not
already-mutated inputs, and a 5% chance of mutating already-mutated inputs.

The notion of favored input is crucial in this computation. AFL creates this set in a
greedy manner. For each branch ID that has been covered, it finds the input with the smallest
product of execution time and input length. This input is the winner for that branch ID.
AFL assigns a winner as favored if it also covers a branch ID that had not been seen in the
previous fuzzing iteration.

Choosing the number of mutants and mutating inputs. In the abstract CGF al-
gorithm we separated the process of choosing the number of mutants to produce (Line 6)
from the mutation process (Line 7). In AFL, these components are tightly intertwined.
AFL’s mutation strategies assume the input to the program under test is a sequence of bytes,
and can be treated as such during mutation. AFL mutates inputs in two main stages: the
deterministic stages and the havoc stage.

All the deterministic mutation stages operate by traversing the input under mutation and
applying a mutation at each position in this input. These mutations include bit flipping,
byte flipping, arithmetic increment and decrement of integer values, replacing of bytes with
“interesting” integer values (0, MAX_INT), etc. The number of mutated inputs produced in each
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Algorithm 2 “Havoc” mutations in AFL.
1: procedure mutateHavoc(Prog, input)
2: numMutations ← randomBetween(1,256)
3: newinput← input
4: for 0 ≤ i <numMutations do
5: mutation ← randomMutationType
6: position ← randomBetween(0, |newinput|)
7: newinput ← mutate(newinput, mutation, position)

of these stages is governed by the length of the input being mutated. So, if the deterministic
mutation stages are not skipped, part of numChildren is simply a linear function of the
input length.

On the other hand, the havoc stage works by applying a sequence of random mutations
to the input being mutated to produce a new input. Algorithm 2 shows this process. Several
mutations are repeatedly applied to the original input (Line 7) before running it through the
program. The type of mutation that can be applied includes all the mutations that can be
applied in the deterministic stages.

The number of total havoc-mutated inputs to be produced is determined by a performance
score, which is the non-input-length dependent part of numChildren. This performance
score is higher for inputs with (a) faster execution times, (b) higher average coverage, (c)
which have been more recently added to the saved input set, and (d) which have been
discovered “deeper” in the fuzzing process (a mutant of a seed input has depth 1, a mutant of
that mutant has depth 2, etc.).

Finally, AFL also includes a crossover-like mutation phase (called splicing) which combines
sequences of the parent input with sequences of other saved inputs. None of algorithms
discussed in this dissertation alter this stage of mutation.

Trimming Inputs Not illustrated in Algorithm 1 is an additional trimming stage before
inputs are mutated. For additional efficiency, inputs are trimmed with an approximate
delta-debugging method [191], which tries to reduce the size of inputs as much as possible
while ensuring they cover the same “path” (the set of (branch ID, branch hits) pairs).

2.2 Random and Mutational Fuzzers
The term fuzz was introduced by Miller et al.’s seminal work on randomized testing of UNIX
utilities [135]. After observing that random characters caused by rain on dial-up phone
lines could cause remote command-line utilities to crash, Miller et al. developed the fuzz
tool. This tool stress-tests command line utilities by repeatedly sending random sequences
of characters as input to these utilities. This original work also included the ptyjig tool,
essentially a generator-based fuzzer for interactive utilities.
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This study found that numerous popular utilities—including bc, emacs, ftp telnet, and
vi—could be crashed with inputs generated by this pure random fuzzing. The study was
revisited five years later [136], and though fewer UNIX utilities could be caused to crash
with this random fuzzing, many of the bugs were still present, and more than half of X-
Window utilities could be crashed with the process. Subsequent studies on Windows NT
GUI applications [72] and Mac OS utilities and GUI applications [134] found similar results.
Finally, a 2020 study found that this method was still effective at finding crashes, showing
the persistent prevalence of pointer and array-related bugs in C/C++ code [133].

A step more sophisticated than these pure random fuzzers are mutational fuzzers, which
generate inputs by mutating some seed inputs, but without the genetic-algorithm-like loop
introduced by AFL. Traditional blackbox mutational fuzzers such as zzuf [95] mutate user-
provided seed inputs according to a mutation ratio, which may need to be adjusted to the
program under test. BFF [100] and SymFuzz [53] adapt this parameter automatically. BFF
measures the crash density—the proportion of generated inputs that cause crashes—for
different mutation ratios, and adjusts the mutation ratio accordingly. SymFuzz conducts the
heavier duty strategy of input-bit dependence inference to adapt the mutation ratio to the
program under test.

Radamsa is a modern mutational fuzzer which has found numerous CVEs in sophisticated
software components such as Chrome, Mozilla Firefox, Adobe Reader and CISCO WebVPN
[29]. One of its appeals is its very simple command line interface, which is in part due to
its black-box nature. Unlike traditional mutational fuzzers, it has some sophistication in its
mutation techniques, i.e. it can recognize parts of inputs that look like numbers and mutate
them as numbers rather than treating them as random bytes.

2.3 Coverage-Guided Fuzzers
Coverage-guided fuzzing piqued the interest of the practitioner and academic community
after the publication of some impressive results on the part of AFL, which we have already
discussed extensively. Particularly impressive results include the automatic discovery of
JPEG structure [187] and the shellshock bug [186].

Several other industrial coverage-guided fuzzers were built after this. First is libFuzzer [167],
integrated into the LLVM-based clang compiler [113] toolchain. The underlying input-
generation method is fairly similar to AFL; a notable difference is that only one mutant is
generated per parent (i.e. numChildren in Line 6 of Algorithm 1 always returns 1) and
that the search terminates after the discovery of any crash. Unlike AFL, which operates by
repeatedly calling a compiled external program under test, libFuzzer is in-process, meaning it
repeatedly runs a single test driver function. This test driver takes in a sequence of bytes and
the length of that sequence as input. In order to run libFuzzer properly, the test driver should
be side-effect free, not leak memory, etc., so that it can be invoked hundreds of thousands of
time. Unlike AFL whose feedback instrumentation is fixed, libFuzzer provides hooks that
allow users to inject extra instrumentation at basic blocks and comparison operations.
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Another notable coverage-guided fuzzer is honggfuzz [174]. It supports the same test driver
abstraction as libFuzzer. The distinguishing feature of honggfuzz is its high-performance
aspect: it supports multi-process and multi-threaded fuzzing out-of-the-box, as opposed to
requiring the launch of multiple fuzzing runs. It is the fuzzer that found the notable critical
security vulnerability in OpenSSL mentioned in the introduction [145].

AFLFast [46] is the seminal work on improving coverage-guided fuzzing in academia.
It presents a Markov Chain model of the fuzzing process, and the hypothesis that inputs
which exercise low-frequency paths —coverage sets exercised by very few fuzzer-generated
inputs—are more likely to produce inputs finding new coverage in the program under test. It
built from this model several improvements to the numChildren, that caused relatively
larger emphasis on the havoc mutation stages of inputs exercising rare paths. This led to large
increases in coverage and decreases in time to reveal bugs compared to AFL, and inspired
improvements of some of AFL’s default heuristics [188].

VUzzer [161] adds several smarter data-flow and control-flow analyses to the coverage-
guided fuzzing process. In a pre-fuzzing static analysis stage, VUzzer identifies basic blocks
containing error handling code, in order to de-prioritize them during fuzzing, as well as deeply
nested basic blocks, in order to prioritize them during fuzzing. VUzzer also uses taint analysis
to improve its mutation strategies, for example to determine which input bytes are used in
direct comparisons, as well as the values they are directly compared against. Thus it can
more easily get through “hard” comparisons, as discussed in Chapter 4. VUzzer re-implements
the whole coverage-guided fuzzing loop rather than building on top of e.g. AFL or libFuzzer.

Steelix [117] is another coverage-guided fuzzer built on top of AFL, whose goal is to
better get through hard comparisons. It relies on extra instrumentation to detect whether
progress is made in a multi-byte equality comparison, i.e. one byte matches in a multi-byte
comparison. When it notices this, it runs an adaptive mutation phase, exhaustively checking
all byte values for the adjacent bytes to the matched byte, and continuing this process until
no more adjacent bytes can be made to match. This is similar to the cmp fuzzer discussed in
Section 4.4.2, but with more targeted mutations. pFuzzer [129] leverages unsatisfied byte-level
comparisons in order to extract the byte that must be present at the last position of an input
to get through the comparison, especially well-suited to fuzzing recursive descent parsers.

Angora [54] also improves on AFL using taint-tracking and a gradient descent methodology.
It uses the LLVM instrumentation framework to track which input bytes flow into different
path constraints, and in order to try and get through those constraints, restricts its mutations
accordingly. Angora treats each predicate in a path constraint as a blackbox function f(x)
over the part of the input x that flows into the predicate. It slightly modifies the x and, with
the results of this mutant, uses the finite difference method to approximate the gradient of
f(x) to guide its search. In addition to this, Angora also tries to infer the type of different
byte sequences (i.e. are these four bytes used as an integer). And, instead of simply looking
at increased branch coverage as AFL does, it adds a notion of context : the coverage point
includes not only the branch, but also a hash of the call stack when that branch was taken.

Matryoshka [55] adopts some of Angora’s taint-tracking and gradient-descent strategies,
but targets the generation of inputs that satisfy highly-nested conditional statements. Given
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a target condition, it first identifies the set of conditions that dominate it, as well as the
data flow of input bytes to these conditions. Then it uses a variety of mutation masking
procedures, and combining inputs that satisfy individual conditions, to create inputs that
satisfy the highly-nested condition.

MOPT [126] alters the order in which different AFL mutation stages are applied, and
whether they are applied at all. In particular, it allows for the scheduling of each different
deterministic mutation stage, as well as the havoc and splicing (crossover) stage. It models
each of these mutation stages as a particle moving in a probability space. Then it uses
Particle Swarm Optimization to try and maximize the efficiency of mutation, i.e. keep the
mutation stages which resulted in most inputs with new coverage.

RedQueen [32] uses a more lightweight approach to get through hard branches. It
identifies correspondences between the input and the program state by simple equality; are
there data strings in the program that are exact subsequences of the input. It instruments
comparison operators to get this data for direct equality conditions. It can then patch the
corresponding input data to get through the equality conditions. It uses a similar approach
to get through checksums: first by identifying computations that look like checksums, and
patching inputs with the checksum-computed values.

ProFuzzer [183] aims to recover some structural information from seed inputs in order to
improve the performance of fuzzing. For each byte in the seed inputs, it generate mutants
with each different possible value of the byte. Based on the changes in coverage caused by
the mutation, it determines a category for the byte, e.g.: is it a constant, is it used in a loop
count, is it an offset, a size. Then it groups together sequential bytes of the same category,
and performs more relevant mutations based on the category.

Entropic [44] leverages the model of software testing as species discovery [43] to improve
the heuristics, in particular fuzzProb in Line 5 of Algorithm 1, of libFuzzer. It introduces
the notion of local Shannon’s Entropy for a seed t — essentially a score of how likely mutants
of t are to discover new branches. Then, fuzzProb is proportional to a Bayesian estimator
of this entropy metric, over low-frequency branches. Due to consistent improvements in
coverage achieved and reductions in time to expose bugs, this implementation of fuzzProb
was incorporated into mainstream libFuzzer.

AFL++ [71] has been developed to integrate many of the innovations discussed above
into one single fuzzer. It includes AFLFast’s energy schedules, RedQueen’s input-to-state
replacement, MOPT’s mutation scheduling, amongst others. It also provides an API to more
easily customize the underlying fuzzer’s input generation strategies. As of September 2020, it
was the fuzzer with the highest overall score as per Google’s FuzzBench project [175].

An alternative to a single mega-fuzzer is to combine multiple fuzzers in parallel. EnFuzz [55]
found that an ensemble fuzzer that shared saved inputs between multiple different fuzzers
generally achieved higher coverage and bug-finding ability compared to the sum of its parts.
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2.4 Specialized Feedback-Directed Fuzzers
As will be discussed in Chapter 4, there has been interest in using the high-level coverage-
guided fuzzing algorithm for different specialized use cases beyond general increased coverage
of command-line utilities.

AFLGo [45] is a directed fuzzing tool, which aims to generate inputs hitting a set of
targets, each of which is a line in a file. It uses call graphs obtained from whole-program
static analysis to compute the distances of between basic blocks, and gives positive feedback
to inputs that reduce this distance. Wüstholz and Christakis propose a directed fuzzing tool
for smart contracts, Bran [180]. Instead of conducting a whole-program static analysis, it
conducts online static analysis to determine the smallest no-target-ahead prefix of an input’s
path—assuming that input does not exercise the target. It uses information about the rarity
of these prefixes to influence numChildren, and emphasize the mutation of inputs which
have a rare no-target-ahead path.

Ijon [31] allows security analysts to insert feedback statements into the program under
test, much like the approach described in Chapter 4. The feedback statements are at a
different level, however. They allow the developer to increment/decrement/maximize feedback
keys, as in Chapter 4, but also to enable and disable coverage feedback in different parts of
the program, and also provide an explicit notion of state feedback.

SlowFuzz [157], built on top of libFuzzer, aims to find inputs showing algorithmic com-
plexity vulnerabilities. The main idea is to create inputs with longer path lengths through
the program by saving inputs with longer path lengths, and adapting the mutation strategy
to locations that result in longer paths. Chapter 3 contrasts this approach with PerfFuzz.

Nezha is a differential fuzzing tool [156] which fuzzes multiple programs at the same
time on one input and tries to maximize the difference in their behavior on that input. In
particular, Nezha introduces the concept of δ-diversity and uses this to force the generation
of inputs showing different behaviors in the program under test. It prioritizes the inputs
which have radically different paths through the programs compared to their parents, as well
as the outputs. This allows for faster discovery of inputs which illustrate semantic differences
between the programs—most likely bugs. DifFuzz [140] also looks at running multiple
versions of a program on a same input, but in order to find side-channel vulnerabilities.
Essentially, the input being mutated consists of a public input as well as two distinct secrets.
Then DifFuzz prioritizes inputs which increase the difference in execution cost between the
runs of the program under the two secrets.

Memlock [178] aims to find memory consumption crashes, vulnerabilities, and memory
leaks. It uses an approach similar to that described in Chapter 3 to accomplish this, but
it instruments memory allocation and deallocation statements in order to build a perfmap
mapping allocations locations to the amount of memory allocated there. MemFuzz [61] saves
inputs that read/write new values to input-dependent memory addresses; this allows it to
find new bugs compared to AFL.

Lauefer et al. [109] use validity feedback in order to fuzz circuits that have constrained
interfaces. This validity feedback is similar to that described in Chapter 6. Harvey [179]
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is a greybox fuzzer optimized for smart contracts. It adds feedback that guides it through
conditional statements, by translating conditional statements to linear expressions and trying
to minimize those expressions. It also detects branches that require more than one transaction,
and uses this bound the transaction sequences it explores. When exploring sequences of length
more than 1, it only prioritizes increased coverage of the last transaction in the sequence.

Bugariu et al. build a fuzzer to test implementations of abstract domains [49] by building
specialized oracles for static analysis bugs. Each of these oracles is encoded as a test-driver,
which also encodes the generation of inputs in a given abstract interpretation domain. A
coverage-guided backend controls the generation of these inputs. In some ways, this can be
seen as a specialized guided generator-based fuzzer, although the inputs are captured as a
sequence of operations in the abstract interpretation domain.

2.5 Structure-Aware and Generator-Based Fuzzers
There is a rich history of randomized testing methods that leverage specifications of input
structure in order to generate inputs. At some level, most of these fall under the abstraction
of generator-based fuzzing, but there are many different branches of generator-based fuzzing,
and ways to utilize structural information in the production of inputs.

Generator-based fuzzing, also called property-based testing, which was discussed in the
introduction, was first popularized by QuickCheck [58]. It allows users to quickly check
a property of the form P (x) ⇒ Q(x) over a domain of inputs X . In particular, given
a user-defined test driver implementing P (x) ⇒ Q(x) with a generator of inputs x ∈ X ,
QuickCheck will execute P (x)⇒ Q(x) on many inputs x. This gives an approximate check
of ∀x ∈ X , P (x)⇒ Q(x). The method has grown in popularity thanks to implementations
in many different languages [14, 13, 18, 19, 151], including prominent languages such as
Python [15], JavaScript [16], and Java [98].

UDITA [78] allows developers to write random input generators in a QuickCheck-like
language. UDITA then performs bounded-exhaustive enumeration of the paths through the
generators, along with several optimizations. Targeted property-testing [123, 124] guides input
generators used in property testing towards a user-specified fitness value using techniques such
as hill climbing and simulated annealing. GödelTest [67] attempts to satisfy user-specified
properties on inputs. It performs a meta-heuristic search for stochastic models that are used
to sample random inputs from a generator, similar to the guides discussed in Part III.

One problem with traditional property-based testing is when few of the generator-generated
inputs satisfy P (x). One way to solve this problem is to do whitebox analysis [81, 47, 78] of the
generator and/or the implementations of P (x) and Q(x). A constraint solver can be used to
generate inputs x ∈ X that are guaranteed to satisfy P (x), which also exercise different code
paths within the implementation of Q(x) [164]. Another approach is to collect code coverage
during test execution [112]. This information can be used in an evolutionary algorithm to
generate inputs that are likely satisfy P (x), while optimizing to increase code coverage through
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Q(x). Chapter 6 presents a similar code-coverage-based approach; a blackbox approach is
discussed in Chapter 7.

Grammar-based fuzzing [130, 170, 62, 40] techniques rely on context-free grammar speci-
fications to generate structured inputs. Godefroid et al. [80] use grammars to build symbolic
constraints at the level of grammar elements, resulting in much higher coverage of the programs
under test than regular symbolic execution (discussed in the next subsection). LangFuzz [97]
generates random programs using a grammar and by recombining code fragments from a
codebase, a mixture of generational and mutational fuzzing. The PEACH fuzzer [17] allows
for more effective fuzzing of programs expecting structured inputs by randomly sampling
inputs according to complex models of common file formats.

CSmith [181] generates random C programs for differential testing of C compilers. The
generator of these programs is highly optimized to prevent the generation of C programs
with undefined behavior, though it requires heavy duty dynamic checks to prevent all unsafe
programs from being generated. YARPGen [122], yet another random generator of C and C++
programs, does not rely on these dynamic checks. It carefully separates variables into different
categories (read-only, write-only, read-write). Then it interleaves a type-checking static
analysis with the generation process. This analysis is bottom-up, identifying sub-expressions
with undefined behavior and mutating them to remove the undefined behavior.

Sulley [28] and BooFuzz [154] allow users to effectively fuzz protocols, based on speci-
fications of those protocols. These specifications must be user-provided. LZFuzz [48] tries
to automatically learn some of the structure of inputs for unknown protocols. It uses an
adapted compression algorithm to identify blocks in the inputs, and leverages this learned
structure for fuzzing.

Several approaches have also looked at leveraging input structures to improve the perfor-
mance of coverage-guided fuzzing. For instance, libprotobuf-mutator [168] extracts high-level
mutation operations from protocol buffer specifications of inputs. AFLSmart [158] uses
PEACH specifications of inputs to get higher-level mutation operators, as well as validity
feedback to guide CGF to generating inputs that fully parse.

Superion [176] uses grammars to enhance the mutation strategies of AFL—including a
LangFuzz-like strategy—and add a structured trimming (i.e. minimization) phase that works
on the AST level. Nautilus [30] also enhances coverage-guided fuzzing with grammars. It
leverages the grammar to (1) generate inputs from scratch which cover diverse aspects of the
grammar; (2) minimize inputs; (3) mutate inputs at the AST level. It introduces 4 different
AST-based mutation strategies as well as retaining some AFL mutations on the leaves.

Another direction is to learn some version of the input structure, rather than assume the
user provides a specification of input structure. LZFuzz [48], which we already discussed, does
this for network protocols. GRIMOIRE [41] learns something close to a context-free grammar
while fuzzing inputs. Essentially it learns a single-level hierarchy grammar, by figuring
out which parts of the input can be modified while still maintaining the newly-discovered
branch which made the input interesting to save. DIFUZE [63] infers device driver interfaces
from a running kernel to bootstrap subsequent structured fuzzing. Learn&Fuzz [83] uses a
sequence-to-sequence model to learn PDF objects, then leverages this model to generate new
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PDF documents with different objects. Interestingly, this model-based approach resulted in
lower overall coverage, likely due to AFL’s coverage of error states.

There are also some recent works that focus more on the grammar learning rather than
fuzzing. Glade [37] uses an iterative approach and repeated calls to an oracle to learn a
context-free grammar for a set of inputs. The first phase of this learning generalizes each
input as a regular expression; a second phase merges learned substructures of the regular
expression. The learned grammars are not meant to be human-readable, but can be used to
sample inputs for fuzzing.

Others approaches use whitebox or greybox information about the program under test to
learn grammars. Lin et al.’s work examines execution traces in order to reconstruct program
input grammars [120, 119]. Autogram [99] tracks input flows into variables, and uses
this dataflow information to learn a well-labeled grammar. Mimid [87] goes a step further,
tracking the control-flow nodes in which input characters are accessed. It directly maps this
control-flow structure to the grammar structure, and takes advantage of function names in
order to sensibly label nonterminals.

2.6 Other Approaches to Automated Testing
The core idea behind symbolic execution [59, 104] is to generate inputs by reasoning about
the path constraints of the program under test. A path constraint is the conjunction of logical
constraints that must be satisfied for an input to follow a certain path through a program.
Advances in SMT solvers have made these methods viable in practice [65, 36, 66].

Traditionally the term symbolic execution is used to refer to methods that collect the
whole set of path constraints at the same time. KLEE is the classic example of such a
symbolic execution engine [51]. KLEE works by analyzing the execution of inputs at the
LLVM bytecode level. Each time it hits a branch statement, it adds the two alternative paths
to the state space of the program. To explore the state space efficiently, it uses either random
sampling of paths, or tries to explore paths that are more likely to result in increased coverage.
One of the big problems with this full exploration is that the space of path constraints grows
exponentially in the number of branches; this is called the path explosion problem.

Concolic execution or dynamic symbolic execution [165, 81] works slightly differently. It
starts with a concrete input and runs it through the program, collecting the constraint of the
path it follows. Then it flips the last branch in that path which has not been fully explored,
and generates an input that solves that path constraint. If all branches are flipped eventually,
this will ensure full coverage of the program under test. Nonetheless, it still suffers from the
aforementioned path explosion problem. MultiSE [166] uses an alternative representation of
the search space—value summaries—that enables it to incrementally merge the state space,
alleviating some of these problems.

The term whitebox fuzzing [82] generally refers to input-generation techniques that utilize
constraint solving to generate inputs, but explore the path constraint space in a more random
manner. SAGE [82] is the most well-known whitebox fuzzer. As in concolic execution, it



CHAPTER 2. BACKGROUND AND RELATED WORK 17

starts with a concrete path through the program. However, instead of just flipping the last
constraint in the path, it tries to flip each constraint individually, generating a new child
input for each constraint. Ideally, this process would be repeated for the child inputs, but
this too explodes the search space. So SAGE uses the heuristic of prioritizing the expansion
of child inputs which result in the largest increase in basic block coverage.

Mayhem’s [52] goal is to find exploitable bugs in program binaries. It switches between
a concrete executor client and a symbolic execution server to generate inputs exposing
potentially exploitable bugs. The concrete execution side performs dynamic taint tracking,
and when it finds a branch condition or jump target which is tainted, it switches control
to the symbolic execution side. The idea is that if a jump target is tainted by the input, it
could potentially be used maliciously by an attacker to cause a jump to unverified code. The
symbolic execution engine then tries to determine whether the branches sent to it from the
concrete executor are feasible. In addition to checking path constraints, Mayhem also keeps
track of an exploitability formula when hitting tainted jump conditions. If this formula is
satisfiable, then the input satisfying it will be an exploit, a distinctive feature of Mayhem.

There has been a recent resurgence of interest in building more scalable symbolic execution
engines from the security community. SymCC [159] is a drop-in replacement to the clang or
clang++ compiler, which builds concolic execution into the binary. The concept is similar to
that in CUTE [165]; during compilation, instructions are added to the binary which, when
executed, build up the symbolic constraints. The important point is that this reasoning
about building up symbolic path expressions is only conducted at compile time, as opposed
to interpreter-based symbolic executors [56, 169]. SymQEMU [160] achieves similar benefits,
but without requiring access to the source code of the program under test. They use the
Tiny Code Generator (TCG) component of QEMU [39] to do this. In regular QEMU, this
component translates the binary to TCG operations before compiling them to the target
machine code. During this process, SymQEMU also adds TCG operations that will, when
executed, build up the symbolic constraints.

The key advantage of the constraint solver based techniques is that they can easily get
through “hard” constraints, a key problem for coverage-guided mutational fuzzers. Several
works have looked at integrating symbolic execution and coverage-guided mutational fuzzing
to get the best of both worlds. Driller [172] runs coverage-guided fuzzing until it gets “stuck”
in certain component, i.e. has not discovered new branches in a certain function for a while.
At this point, it invokes concolic execution on the saved inputs for that component. In only
tries to flip constraints that have not been previously exercised by a saved input. Munch [142]
also orchestrates symbolic execution (KLEE) and AFL. It can run in two hybrid modes. If
seed inputs are available, it runs the FS hybrid mode: run AFL for some time, then use KLEE
to generate inputs that reach function not reached by AFL. It saves some of the symbolic
execution effort by excluding paths to functions explored by AFL already. Otherwise, it
runs the SF hybrid mode: start by generating seed inputs via symbolic execution, then run
fuzzing.

Before describing QSym [184], Yun et al. evaluate the actual performance costs of hybrid
(symbolic + coverage-guided) fuzzing. They find that the path explosion problem is not the
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only bottleneck to performance. In particular, (1) they help reduce the cost of emulation by
writing a concolic executor at the x86 instruction level rather than the LLVM IR level; (2)
they get rid of some snapshotting since the goal is to use concolic execution to get through
a given hard branch; and (3) they reduce the cost of constraint solving by only trying to
flip the target branch, rather than trying to keep an exact path prefix. This resulted in the
discovery of new bugs in software that had been heavily fuzzed by coverage-guided fuzzing.

Another approach to smarter fuzzing is to find locations in seed inputs related to likely
crash locations in the program and focus mutation there. BuzzFuzz [77] starts from a set
of seed inputs and runs them through the program. It conducts dynamic taint tracking to
figure out which bytes of the input flow into dangerous locations—e.g. the input of a malloc
call. Then it creates mutant inputs by setting those bytes to extremal values. Similarly,
TaintScope [177] tracks which bytes flow to security-sensitive operations and focuses mutations
on these bytes. In addition, it automatically identifies checksums in the program under test,
and bypasses these during fuzzing. If an interesting input is found which bypasses these
checksums, it uses dynamic symbolic execution to repair the checksum.

Dowser [92] focuses on finding inputs which cause buffer overflows. It identifies locations
in the program where buffer overflows may occur, in particular, loops containing pointer
dereferences. It then conducts taint-tracking to determine which bytes flow to these target
locations. Then it conducts partial dynamic symbolic execution, treating only those bytes
that flow to the target locations as symbolic.

While coverage-guided fuzz testing emerged from the security community, the idea of
using genetic algorithms for testing has been long explored in the software engineering
community [137, 107]. The field of search-based software testing [131, 91, 90, 182] uses
optimization techniques such as hill climbing and genetic algorithms to generate inputs that
optimize some observable fitness function. These techniques work well when the fitness curve
is smooth with respect to changes in the input.

For instance, Sapienz [128] automatically creates test suites for Android applications. It
uses proper multi-objective search (i.e. Pareto optimal [93]) to maximize code coverage and
number of crashes found while reducing the length of interaction sequences in the test suite.
Since the whole test suite is being evolved at a time, the maximization of code coverage is a
reasonable approach; coverage-guided fuzzing tools like AFL operate on the single test-case
level, and thus must rely on the novelty search approach of saving inputs that find new
coverage. Sapienz uses several mutation operators specialized to the Android domain in order
to optimize the search.

Finally, another direction in automated testing is to automatically create test cases rather
than inputs to a test driver. Randoop [147] and EvoSuite [74] automatically produce JUnit
tests for a particular class by incrementally trying and combining sequences of method
invocations on the component classes. During the generation of sequence of calls, both
Randoop and EvoSuite take some form of feedback into account. For instance, Randoop
avoids extending call sequences that led to exceptions. EvoSuite uses a genetic algorithm to
evolve a test suite using code coverage as a fitness function.
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